qwen.py 11 KB
Newer Older
Qing's avatar
Qing committed
1
2
3
4
5
6
7
8
9
10
# coding=utf-8
# Adapted from
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
# Copyright (c) Alibaba Cloud.
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
"""Inference-only QWen model compatible with HuggingFace weights.

The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
Qing's avatar
Qing committed
11
from typing import Any, Dict, List, Optional, Tuple
Qing's avatar
Qing committed
12
13
14
15
16
17
18
19
20
21

import torch
from torch import nn

from vllm.model_executor.input_metadata import InputMetadata
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.attention import PagedAttentionWithRoPE
from vllm.model_executor.layers.sampler import Sampler
from vllm.model_executor.weight_utils import (
22
    convert_pyslice_to_tensor,
Qing's avatar
Qing committed
23
    hf_model_weights_iterator,
JFDuan's avatar
JFDuan committed
24
    load_padded_tensor_parallel_vocab,
Qing's avatar
Qing committed
25
26
27
28
29
30
    load_tensor_parallel_weights,
)
from vllm.model_executor.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank,
    get_tensor_model_parallel_world_size,
)
31
from vllm.model_executor.parallel_utils.layers import (
Qing's avatar
Qing committed
32
33
34
35
    VocabParallelEmbedding,
    ColumnParallelLinear,
    RowParallelLinear,
)
36
from vllm.sequence import SamplerOutput
Qing's avatar
Qing committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
from vllm.transformers_utils.configs.qwen import QWenConfig

KVCache = Tuple[torch.Tensor, torch.Tensor]


class QWenMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str = "silu",
    ):
        super().__init__()
        self.gate_up_proj = ColumnParallelLinear(
            hidden_size,
            2 * intermediate_size,
            bias=False,
            gather_output=False,
        )
        self.c_proj = RowParallelLinear(
            intermediate_size,
            hidden_size,
            bias=False,
            input_is_parallel=True,
        )
        if hidden_act != "silu":
            raise ValueError(f"Unsupported activation: {hidden_act}. "
                             "Only silu is supported for now.")
        self.act_fn = SiluAndMul()

    def forward(self, x):
        gate_up, _ = self.gate_up_proj(x)
        x = self.act_fn(gate_up)
        x, _ = self.c_proj(x)
        return x


class QWenAttention(nn.Module):

Qing's avatar
Qing committed
77
78
79
80
81
82
    def __init__(self,
                 hidden_size: int,
                 num_heads: int,
                 max_position_embeddings: int,
                 rope_theta: float = 10000,
                 rope_scaling: Optional[Dict[str, Any]] = None):
Qing's avatar
Qing committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        super().__init__()
        self.hidden_size = hidden_size
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
        )
        self.total_num_heads = num_heads
        assert self.total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = (self.total_num_heads //
                          tensor_model_parallel_world_size)
        self.head_dim = hidden_size // self.total_num_heads

        # pylint: disable=invalid-name
        self.c_attn = ColumnParallelLinear(
            hidden_size,
            3 * hidden_size,
            bias=True,
            gather_output=False,
        )
        self.c_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            input_is_parallel=True,
        )
        self.scaling = self.head_dim**-0.5
        self.attn = PagedAttentionWithRoPE(
            self.num_heads,
            self.head_dim,
            self.scaling,
            rotary_dim=self.head_dim,
112
            base=rope_theta,
Qing's avatar
Qing committed
113
            max_position=max_position_embeddings,
Qing's avatar
Qing committed
114
            rope_scaling=rope_scaling)
Qing's avatar
Qing committed
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        qkv, _ = self.c_attn(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)

        k_cache, v_cache = kv_cache
        attn_output = self.attn(positions, q, k, v, k_cache, v_cache,
                                input_metadata, cache_event)

        output, _ = self.c_proj(attn_output)
        return output


class QWenBlock(nn.Module):

    def __init__(self, config: QWenConfig):
        super().__init__()
Qing's avatar
Qing committed
139
        self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
Qing's avatar
Qing committed
140

141
        rope_theta = getattr(config, "rope_theta", 10000)
Qing's avatar
Qing committed
142
        rope_scaling = getattr(config, "rope_scaling", None)
Qing's avatar
Qing committed
143
        self.attn = QWenAttention(config.hidden_size,
144
145
                                  config.num_attention_heads,
                                  config.max_position_embeddings,
Qing's avatar
Qing committed
146
147
                                  rope_theta=rope_theta,
                                  rope_scaling=rope_scaling)
Qing's avatar
Qing committed
148

Qing's avatar
Qing committed
149
        self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
Qing's avatar
Qing committed
150

Qing's avatar
Qing committed
151
        self.mlp = QWenMLP(config.hidden_size, config.intermediate_size // 2)
Qing's avatar
Qing committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

    def forward(
        self,
        positions: torch.Tensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        # Self Attention
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        hidden_states = self.attn(
            positions=positions,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states


class QWenModel(nn.Module):

    def __init__(self, config: QWenConfig):
        super().__init__()
        self.config = config
        self.vocab_size = config.vocab_size

        vocab_size = ((config.vocab_size + 63) // 64) * 64
189
190
191
192
        self.wte = VocabParallelEmbedding(
            vocab_size,
            config.hidden_size,
        )
Qing's avatar
Qing committed
193
194
        self.h = nn.ModuleList(
            [QWenBlock(config) for _ in range(config.num_hidden_layers)])
Qing's avatar
Qing committed
195
        self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
Qing's avatar
Qing committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        hidden_states = self.wte(input_ids)
        for i in range(len(self.h)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.h[i]
            hidden_states = layer(
                positions,
                hidden_states,
                kv_caches[i],
                input_metadata,
                cache_event,
            )
        hidden_states = self.ln_f(hidden_states)
        return hidden_states


class QWenLMHeadModel(nn.Module):

    def __init__(self, config: QWenConfig):
        super().__init__()
        self.config = config
        self.transformer = QWenModel(config)
        vocab_size = ((config.vocab_size + 63) // 64) * 64
        self.lm_head = ColumnParallelLinear(
Qing's avatar
Qing committed
231
            config.hidden_size,
Qing's avatar
Qing committed
232
233
234
235
236
237
238
239
240
241
242
243
244
            vocab_size,
            bias=False,
            gather_output=False,
        )
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.Tensor,
        positions: torch.Tensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
245
    ) -> SamplerOutput:
Qing's avatar
Qing committed
246
247
248
249
250
251
        hidden_states = self.transformer(input_ids, positions, kv_caches,
                                         input_metadata, cache_events)
        next_tokens = self.sampler(self.lm_head.weight, hidden_states,
                                   input_metadata)
        return next_tokens

JFDuan's avatar
JFDuan committed
252
    _column_parallel_weights = []
Qing's avatar
Qing committed
253
254
255
256
257
258
    _row_parallel_weights = ["c_proj.weight"]

    def load_weights(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
259
        load_format: str = "auto",
Jasmond L's avatar
Jasmond L committed
260
        revision: Optional[str] = None,
Qing's avatar
Qing committed
261
262
263
264
265
266
    ):
        tp_world_size = get_tensor_model_parallel_world_size()
        tp_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()

        for name, loaded_weight in hf_model_weights_iterator(
Jasmond L's avatar
Jasmond L committed
267
                model_name_or_path, cache_dir, load_format, revision):
Qing's avatar
Qing committed
268
269
270
            if "rotary_emb.inv_freq" in name:
                continue

271
272
            loaded_weight = convert_pyslice_to_tensor(loaded_weight)

Qing's avatar
Qing committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
            if "c_attn" in name:
                total_num_heads = self.config.num_attention_heads
                hidden_size = self.config.hidden_size
                head_size = hidden_size // total_num_heads
                num_heads = total_num_heads // tp_world_size
                head_start = tp_rank * num_heads
                head_end = (tp_rank + 1) * num_heads

                if "weight" in name:
                    loaded_weight = loaded_weight.view(3, total_num_heads,
                                                       head_size, hidden_size)
                    loaded_weight = loaded_weight[:, head_start:head_end, :, :]
                    loaded_weight = loaded_weight.reshape(-1, hidden_size)
                elif "bias" in name:
                    loaded_weight = loaded_weight.view(3, total_num_heads,
                                                       head_size)
                    loaded_weight = loaded_weight[:, head_start:head_end, :]
                    loaded_weight = loaded_weight.reshape(-1)

            is_gate_up_weight = False
            for stride_id, weight_name in enumerate(["w2", "w1"]):
                if weight_name not in name:
                    continue
                param = state_dict[name.replace(weight_name, "gate_up_proj")]
                shard_size = param.shape[0] // 2
                loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
                                              (tp_rank + 1)]
                param_slice = param.data[shard_size * stride_id:shard_size *
                                         (stride_id + 1)]
                assert param_slice.shape == loaded_weight.shape
                param_slice.copy_(loaded_weight)
                is_gate_up_weight = True
                break
            if is_gate_up_weight:
                continue

            param = state_dict[name]
JFDuan's avatar
JFDuan committed
310
311
312
313
314
315

            if "wte" in name or "lm_head" in name:
                load_padded_tensor_parallel_vocab(param, loaded_weight,
                                                  tp_rank)
                continue

Qing's avatar
Qing committed
316
317
318
319
320
321
322
323
            load_tensor_parallel_weights(
                param,
                loaded_weight,
                name,
                self._column_parallel_weights,
                self._row_parallel_weights,
                tp_rank,
            )