quickstart.rst 5.3 KB
Newer Older
Zhuohan Li's avatar
Zhuohan Li committed
1
2
.. _quickstart:

Woosuk Kwon's avatar
Woosuk Kwon committed
3
4
5
Quickstart
==========

Zhuohan Li's avatar
Zhuohan Li committed
6
7
8
9
10
11
12
This guide shows how to use vLLM to:

* run offline batched inference on a dataset;
* build an API server for a large language model;
* start an OpenAI-compatible API server.

Be sure to complete the :ref:`installation instructions <installation>` before continuing with this guide.
Woosuk Kwon's avatar
Woosuk Kwon committed
13

Zhuohan Li's avatar
Zhuohan Li committed
14
15
16
17
18
19
Offline Batched Inference
-------------------------

We first show an example of using vLLM for offline batched inference on a dataset. In other words, we use vLLM to generate texts for a list of input prompts.

Import ``LLM`` and ``SamplingParams`` from vLLM. The ``LLM`` class is the main class for running offline inference with vLLM engine. The ``SamplingParams`` class specifies the parameters for the sampling process.
Woosuk Kwon's avatar
Woosuk Kwon committed
20
21
22

.. code-block:: python

Woosuk Kwon's avatar
Woosuk Kwon committed
23
    from vllm import LLM, SamplingParams
Woosuk Kwon's avatar
Woosuk Kwon committed
24

25
Define the list of input prompts and the sampling parameters for generation. The sampling temperature is set to 0.8 and the nucleus sampling probability is set to 0.95. For more information about the sampling parameters, refer to the `class definition <https://github.com/vllm-project/vllm/blob/main/vllm/sampling_params.py>`_.
Zhuohan Li's avatar
Zhuohan Li committed
26
27
28

.. code-block:: python

Woosuk Kwon's avatar
Woosuk Kwon committed
29
30
31
32
33
34
35
36
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]
    sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

Zhuohan Li's avatar
Zhuohan Li committed
37
38
39
40
Initialize vLLM's engine for offline inference with the ``LLM`` class and the `OPT-125M model <https://arxiv.org/abs/2205.01068>`_. The list of supported models can be found at :ref:`supported models <supported_models>`.

.. code-block:: python

Woosuk Kwon's avatar
Woosuk Kwon committed
41
42
    llm = LLM(model="facebook/opt-125m")

Zhuohan Li's avatar
Zhuohan Li committed
43
44
45
46
Call ``llm.generate`` to generate the outputs. It adds the input prompts to vLLM engine's waiting queue and executes the vLLM engine to generate the outputs with high throughput. The outputs are returned as a list of ``RequestOutput`` objects, which include all the output tokens.

.. code-block:: python

Woosuk Kwon's avatar
Woosuk Kwon committed
47
48
49
50
51
52
53
    outputs = llm.generate(prompts, sampling_params)

    # Print the outputs.
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Zhuohan Li's avatar
Zhuohan Li committed
54
55


56
The code example can also be found in `examples/offline_inference.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py>`_.
Zhuohan Li's avatar
Zhuohan Li committed
57
58
59
60
61


API Server
----------

62
vLLM can be deployed as an LLM service. We provide an example `FastAPI <https://fastapi.tiangolo.com/>`_ server. Check `vllm/entrypoints/api_server.py <https://github.com/vllm-project/vllm/blob/main/vllm/entrypoints/api_server.py>`_ for the server implementation. The server uses ``AsyncLLMEngine`` class to support asynchronous processing of incoming requests.
Zhuohan Li's avatar
Zhuohan Li committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

Start the server:

.. code-block:: console

    $ python -m vllm.entrypoints.api_server

By default, this command starts the server at ``http://localhost:8000`` with the OPT-125M model.

Query the model in shell:

.. code-block:: console

    $ curl http://localhost:8000/generate \
    $     -d '{
    $         "prompt": "San Francisco is a",
    $         "use_beam_search": true,
    $         "n": 4,
    $         "temperature": 0
    $     }'

84
See `examples/api_client.py <https://github.com/vllm-project/vllm/blob/main/examples/api_client.py>`_ for a more detailed client example.
Zhuohan Li's avatar
Zhuohan Li committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

OpenAI-Compatible Server
------------------------

vLLM can be deployed as a server that mimics the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API.

Start the server:

.. code-block:: console

    $ python -m vllm.entrypoints.openai.api_server \
    $     --model facebook/opt-125m

By default, it starts the server at ``http://localhost:8000``. You can specify the address with ``--host`` and ``--port`` arguments. The server currently hosts one model at a time (OPT-125M in the above command) and implements `list models <https://platform.openai.com/docs/api-reference/models/list>`_ and `create completion <https://platform.openai.com/docs/api-reference/completions/create>`_ endpoints. We are actively adding support for more endpoints.

This server can be queried in the same format as OpenAI API. For example, list the models:

.. code-block:: console

    $ curl http://localhost:8000/v1/models

Query the model with input prompts:

.. code-block:: console

    $ curl http://localhost:8000/v1/completions \
    $     -H "Content-Type: application/json" \
    $     -d '{
    $         "model": "facebook/opt-125m",
    $         "prompt": "San Francisco is a",
    $         "max_tokens": 7,
    $         "temperature": 0
    $     }'

Since this server is compatible with OpenAI API, you can use it as a drop-in replacement for any applications using OpenAI API. For example, another way to query the server is via the ``openai`` python package:

.. code-block:: python

    import openai
    # Modify OpenAI's API key and API base to use vLLM's API server.
    openai.api_key = "EMPTY"
    openai.api_base = "http://localhost:8000/v1"
    completion = openai.Completion.create(model="facebook/opt-125m",
                                          prompt="San Francisco is a")
    print("Completion result:", completion)

131
For a more detailed client example, refer to `examples/openai_client.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_client.py>`_.