benchmark_latency.py 3.55 KB
Newer Older
1
"""Benchmark the latency of processing a single batch of requests."""
2
3
4
5
6
import argparse
import time

import numpy as np
import torch
7
from tqdm import tqdm
8

Woosuk Kwon's avatar
Woosuk Kwon committed
9
from vllm import LLM, SamplingParams
10
11
12


def main(args: argparse.Namespace):
13
14
15
16
    print(args)

    # Process all the requests in a single batch if possible.
    # NOTE(woosuk): If the request cannot be processed in a single batch,
Zhuohan Li's avatar
Zhuohan Li committed
17
    # the engine will automatically process the request in multiple batches.
18
19
    llm = LLM(
        model=args.model,
20
        tokenizer=args.tokenizer,
21
        quantization=args.quantization,
22
23
24
        tensor_parallel_size=args.tensor_parallel_size,
        max_num_seqs=args.batch_size,
        max_num_batched_tokens=args.batch_size * args.input_len,
25
        trust_remote_code=args.trust_remote_code,
26
        dtype=args.dtype,
27
    )
28

Woosuk Kwon's avatar
Woosuk Kwon committed
29
30
31
32
33
    sampling_params = SamplingParams(
        n=args.n,
        temperature=0.0 if args.use_beam_search else 1.0,
        top_p=1.0,
        use_beam_search=args.use_beam_search,
34
        ignore_eos=True,
Woosuk Kwon's avatar
Woosuk Kwon committed
35
36
        max_tokens=args.output_len,
    )
37
    print(sampling_params)
38
    dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
39

40
    def run_to_completion(profile: bool = False):
41
42
43
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        start_time = time.time()
44

Woosuk Kwon's avatar
Woosuk Kwon committed
45
46
        llm.generate(prompt_token_ids=dummy_prompt_token_ids,
                     sampling_params=sampling_params,
47
48
                     use_tqdm=False)

49
50
51
52
53
54
        end_time = time.time()
        latency = end_time - start_time
        if profile:
            torch.cuda.cudart().cudaProfilerStop()
        return latency

55
56
    print("Warming up...")
    run_to_completion(profile=False)
57
58
59

    # Benchmark.
    latencies = []
60
61
    for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
        latencies.append(run_to_completion(profile=False))
62
63
64
65
    print(f'Avg latency: {np.mean(latencies)} seconds')


if __name__ == '__main__':
66
    parser = argparse.ArgumentParser(
67
        description='Benchmark the latency of processing a single batch of '
68
        'requests till completion.')
69
    parser.add_argument('--model', type=str, default='facebook/opt-125m')
70
    parser.add_argument('--tokenizer', type=str, default=None)
71
72
73
74
    parser.add_argument('--quantization',
                        '-q',
                        choices=['awq', None],
                        default=None)
75
    parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
76
77
78
    parser.add_argument('--input-len', type=int, default=32)
    parser.add_argument('--output-len', type=int, default=128)
    parser.add_argument('--batch-size', type=int, default=8)
79
80
81
    parser.add_argument('--n',
                        type=int,
                        default=1,
82
                        help='Number of generated sequences per prompt.')
83
    parser.add_argument('--use-beam-search', action='store_true')
84
85
86
    parser.add_argument('--num-iters',
                        type=int,
                        default=3,
87
                        help='Number of iterations to run.')
88
89
    parser.add_argument('--trust-remote-code',
                        action='store_true',
90
                        help='trust remote code from huggingface')
91
92
93
94
95
96
97
98
99
    parser.add_argument(
        '--dtype',
        type=str,
        default='auto',
        choices=['auto', 'half', 'float16', 'bfloat16', 'float', 'float32'],
        help='data type for model weights and activations. '
        'The "auto" option will use FP16 precision '
        'for FP32 and FP16 models, and BF16 precision '
        'for BF16 models.')
100
101
    args = parser.parse_args()
    main(args)