benchmark_serving.py 12.4 KB
Newer Older
1
2
3
"""Benchmark online serving throughput.

On the server side, run one of the following commands:
Woosuk Kwon's avatar
Woosuk Kwon committed
4
5
    (vLLM backend)
    python -m vllm.entrypoints.api_server \
6
7
        --model <your_model> --swap-space 16 \
        --disable-log-requests
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

    (TGI backend)
    ./launch_hf_server.sh <your_model>

On the client side, run:
    python benchmarks/benchmark_serving.py \
        --backend <backend> \
        --tokenizer <your_model> --dataset <target_dataset> \
        --request-rate <request_rate>
"""
import argparse
import asyncio
import json
import random
import time
23
24
from dataclasses import dataclass
from datetime import datetime
25
26
27
from typing import AsyncGenerator, List, Tuple

import numpy as np
28
from tqdm.asyncio import tqdm
29
30
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from backend_request_func import (
    ASYNC_REQUEST_FUNCS,
    RequestFuncInput,
    RequestFuncOutput,
)


@dataclass
class BenchmarkMetrics:
    completed: int
    total_input: int
    total_output: int
    request_throughput: float
    input_throughput: float
    output_throughput: float
    mean_ttft_ms: float
    median_ttft_ms: float
    p99_ttft_ms: float
    mean_tpot_ms: float
    median_tpot_ms: float
    p99_tpot_ms: float
53
54
55
56
57
58
59
60
61
62
63


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
64
    dataset = [data for data in dataset if len(data["conversations"]) >= 2]
65
    # Only keep the first two turns of each conversation.
66
67
    dataset = [(data["conversations"][0]["value"],
                data["conversations"][1]["value"]) for data in dataset]
68

69
70
71
72
73
    # some of these will be filtered out, so sample more than we need
    sampled_indices = random.sample(range(len(dataset)),
                                    int(num_requests * 1.2))
    dataset = [dataset[i] for i in sampled_indices]

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            # This is because TGI causes errors when the input or output length
            # is too short.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

    # Sample the requests.
    sampled_requests = random.sample(filtered_dataset, num_requests)
    return sampled_requests


async def get_request(
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue
        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def calculate_metrics(
    input_requests: List[Tuple[str, int, int]],
    outputs: List[RequestFuncOutput],
    dur_s: float,
    tokenizer: PreTrainedTokenizerBase,
) -> BenchmarkMetrics:
    total_output = 0
    total_input = 0
    completed = 0
    per_token_latencies = []
    ttfts = []
    for i in range(len(outputs)):
        if outputs[i].success:
            output_len = len(tokenizer.encode(outputs[i].generated_text))
            total_output += output_len
            total_input += input_requests[i][1]
            per_token_latencies.append(outputs[i].latency / output_len)
            ttfts.append(outputs[i].ttft)
            completed += 1
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
    metrics = BenchmarkMetrics(
        completed=completed,
        total_input=total_input,
        total_output=total_output,
        request_throughput=completed / dur_s,
        input_throughput=total_input / dur_s,
        output_throughput=total_output / dur_s,
        mean_ttft_ms=np.mean(ttfts) * 1000,
        median_ttft_ms=np.median(ttfts) * 1000,
        p99_ttft_ms=np.percentile(ttfts, 99) * 1000,
        mean_tpot_ms=np.mean(per_token_latencies) * 1000,
        median_tpot_ms=np.median(per_token_latencies) * 1000,
        p99_tpot_ms=np.percentile(per_token_latencies, 99) * 1000,
    )
154

155
    return metrics
156

157
158
159
160

async def benchmark(
    backend: str,
    api_url: str,
161
162
    model_id: str,
    tokenizer: PreTrainedTokenizerBase,
163
164
165
166
    input_requests: List[Tuple[str, int, int]],
    best_of: int,
    use_beam_search: bool,
    request_rate: float,
167
168
169
170
171
172
173
174
175
176
177
178
179
    disable_tqdm: bool,
):
    if backend in ASYNC_REQUEST_FUNCS:
        request_func = ASYNC_REQUEST_FUNCS.get(backend)
    else:
        raise ValueError(f"Unknown backend: {backend}")

    pbar = None if disable_tqdm else tqdm(total=len(input_requests))

    print(f"Traffic request rate: {request_rate}")

    benchmark_start_time = time.perf_counter()
    tasks = []
180
181
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        request_func_input = RequestFuncInput(
            model=model_id,
            prompt=prompt,
            api_url=api_url,
            prompt_len=prompt_len,
            output_len=output_len,
            best_of=best_of,
            use_beam_search=use_beam_search,
        )
        tasks.append(
            asyncio.create_task(
                request_func(request_func_input=request_func_input,
                             pbar=pbar)))
    outputs = await asyncio.gather(*tasks)

    if not disable_tqdm:
        pbar.close()

    benchmark_duration = time.perf_counter() - benchmark_start_time

    metrics = calculate_metrics(
        input_requests=input_requests,
        outputs=outputs,
        dur_s=benchmark_duration,
        tokenizer=tokenizer,
    )

    print(f"Successful requests: {metrics.completed}")
    print(f"Benchmark duration: {benchmark_duration:2f} s")
    print(f"Total input tokens: {metrics.total_input}")
    print(f"Total generated tokens: {metrics.total_output}")
    print(f"Request throughput: {metrics.request_throughput:.2f} requests/s")
    print(f"Input token throughput: {metrics.input_throughput:.2f} tokens/s")
    print(f"Output token throughput: {metrics.output_throughput:.2f} tokens/s")
    print(f"Mean TTFT: {metrics.mean_ttft_ms:.2f} ms")
    print(f"Median TTFT: {metrics.median_ttft_ms:.2f} ms")
    print(f"P99 TTFT: {metrics.p99_ttft_ms:.2f} ms")
    print(f"Mean TPOT: {metrics.mean_tpot_ms:.2f} ms")
    print(f"Median TPOT: {metrics.median_tpot_ms:.2f} ms")
    print(f"P99 TPOT: {metrics.p99_tpot_ms:.2f} ms")

    result = {
        "duration": benchmark_duration,
        "completed": metrics.completed,
        "total_input_tokens": metrics.total_input,
        "total_output_tokens": metrics.total_output,
        "request_inthroughput": metrics.request_throughput,
        "input_throughput": metrics.input_throughput,
        "output_throughput": metrics.output_throughput,
        "mean_ttft_ms": metrics.mean_ttft_ms,
        "median_ttft_ms": metrics.median_ttft_ms,
        "p99_ttft_ms": metrics.p99_ttft_ms,
        "mean_tpot_ms": metrics.mean_tpot_ms,
        "median_tpot_ms": metrics.median_tpot_ms,
        "p99_tpot_ms": metrics.p99_tpot_ms
    }
    return result
239
240
241
242
243
244
245


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)
    np.random.seed(args.seed)

246
247
248
249
250
251
252
253
254
255
    backend = args.backend
    model_id = args.model
    tokenizer_id = args.tokenizer if args.tokenizer is not None else args.model

    if args.base_url is not None:
        api_url = f"{args.base_url}{args.endpoint}"
    else:
        api_url = f"http://{args.host}:{args.port}{args.endpoint}"

    tokenizer = get_tokenizer(tokenizer_id,
256
                              trust_remote_code=args.trust_remote_code)
257
258
    input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    benchmark_result = asyncio.run(
        benchmark(
            backend=backend,
            api_url=api_url,
            model_id=model_id,
            tokenizer=tokenizer,
            input_requests=input_requests,
            best_of=args.best_of,
            use_beam_search=args.use_beam_search,
            request_rate=args.request_rate,
            disable_tqdm=args.disable_tqdm,
        ))

    # Save config and results to json
    if args.save_result:
        result_json = {}

        # Setup
        current_dt = datetime.now().strftime("%Y%m%d-%H%M%S")
        result_json["date"] = current_dt
        result_json["backend"] = backend
        result_json["version"] = args.version
        result_json["model_id"] = model_id
        result_json["tokenizer_id"] = tokenizer_id
        result_json["best_of"] = args.best_of
        result_json["use_beam_search"] = args.use_beam_search
        result_json["num_prompts"] = args.num_prompts

        # Traffic
        result_json["request_rate"] = (
            args.request_rate if args.request_rate < float("inf") else "inf")

        # Merge with benchmark result
        result_json = {**result_json, **benchmark_result}

        # Save to file
        base_model_id = model_id.split("/")[-1]
        file_name = f"{backend}-{args.request_rate}qps-{base_model_id}-{current_dt}.json"
        with open(file_name, "w") as outfile:
            json.dump(result_json, outfile)
299
300
301
302
303


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Benchmark the online serving throughput.")
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    parser.add_argument(
        "--backend",
        type=str,
        default="vllm",
        choices=list(ASYNC_REQUEST_FUNCS.keys()),
    )
    parser.add_argument(
        "--version",
        type=str,
        default="N/A",
        help="Version of the serving backend/engine.",
    )
    parser.add_argument(
        "--base-url",
        type=str,
        default=None,
        help="Server or API base url if not using http host and port.",
    )
322
    parser.add_argument("--host", type=str, default="localhost")
323
    parser.add_argument("--port", type=int, default=8000)
324
325
326
327
328
329
    parser.add_argument(
        "--endpoint",
        type=str,
        default="/generate",
        help="API endpoint.",
    )
330
331
332
    parser.add_argument("--dataset",
                        type=str,
                        required=True,
333
                        help="Path to the dataset.")
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
    parser.add_argument(
        "--model",
        type=str,
        required=True,
        help="Name of the model.",
    )
    parser.add_argument(
        "--tokenizer",
        type=str,
        help=
        "Name or path of the tokenizer, if not using the default model tokenizer.",
    )
    parser.add_argument(
        "--best-of",
        type=int,
        default=1,
        help="Generates `best_of` sequences per prompt and "
        "returns the best one.",
    )
353
    parser.add_argument("--use-beam-search", action="store_true")
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
    parser.add_argument(
        "--num-prompts",
        type=int,
        default=1000,
        help="Number of prompts to process.",
    )
    parser.add_argument(
        "--request-rate",
        type=float,
        default=float("inf"),
        help="Number of requests per second. If this is inf, "
        "then all the requests are sent at time 0. "
        "Otherwise, we use Poisson process to synthesize "
        "the request arrival times.",
    )
369
    parser.add_argument("--seed", type=int, default=0)
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    parser.add_argument(
        "--trust-remote-code",
        action="store_true",
        help="Trust remote code from huggingface",
    )
    parser.add_argument(
        "--disable-tqdm",
        action="store_true",
        help="Specify to disbale tqdm progress bar.",
    )
    parser.add_argument(
        "--save-result",
        action="store_true",
        help="Specify to save benchmark results to a json file",
    )

386
387
    args = parser.parse_args()
    main(args)