ray_utils.py 3.36 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import random
from typing import List, Optional, Tuple

try:
    import ray
except ImportError:
    ray = None

from cacheflow.config import ParallelConfig

11
DeviceID = Tuple[int, Optional[str], int]  # rank, node resource (node IP), device id
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90


def initialize_cluster(
    parallel_config: ParallelConfig,
    address: Optional[str] = None,
) -> Tuple[str, List[List[DeviceID]]]:
    if not parallel_config.use_ray:
        # Initialize cluster locally.
        port = random.randint(10000, 20000)
        # We need to setup the distributed init method to make sure
        # the distributed megatron code (e.g., get world size) works correctly.
        distributed_init_method = f"tcp://localhost:{port}"
        all_stage_devices = [[(0, None, 0)]]
        return distributed_init_method, all_stage_devices

    if ray is None:
        raise ImportError(
            "Ray is not installed. Please install Ray to use distributed "
            "serving.")
    # Connect to a ray cluster.
    ray.init(address=address)

    # Assume we have a uniform cluster that each node has the same number of
    # GPUs for now.
    valid_node_resources = []
    num_devices_per_node = None
    for node in ray.nodes():
        if (not node['Alive']) or node['Resources']['GPU'] <= 0:
            continue
        if num_devices_per_node is None:
            num_devices_per_node = node['Resources']['GPU']
        else:
            assert num_devices_per_node == node['Resources']['GPU'], (
                "The number of GPUs per node is not uniform.")
        for key in node['Resources']:
            if key.startswith('node:'):
                valid_node_resources.append(key)

    # Verify the parallel config.
    num_nodes = len(valid_node_resources)
    if parallel_config.world_size > num_nodes * num_devices_per_node:
        raise ValueError(
            "The number of required GPUs exceeds the total number of "
            "available GPUs.")
    if parallel_config.tensor_parallel_size >= num_devices_per_node:
        if parallel_config.tensor_parallel_size % num_devices_per_node != 0:
            raise ValueError(
                "The number of tensor parallelism is not divisible by the "
                "number of GPUs per node.")
    else:
        if num_devices_per_node % parallel_config.tensor_parallel_size != 0:
            raise ValueError(
                "The number of GPUs per node is not divisible by the number "
                "of tensor parallelism.")

    # Assign GPUs to pipeline stages.
    rank = 0
    current_node_id = 0
    current_device_id = 0
    distributed_init_method = None
    all_stage_devices = []

    for _ in range(parallel_config.pipeline_parallel_size):
        stage_devices = []
        for _ in range(parallel_config.tensor_parallel_size):
            node_resource = valid_node_resources[current_node_id]
            stage_devices.append((rank, node_resource, current_device_id))
            if distributed_init_method is None:
                ip = node_resource.split("node:")[-1]
                port = random.randint(10000, 20000)
                distributed_init_method = f"tcp://{ip}:{port}"
            rank += 1
            current_device_id += 1
            if current_device_id >= num_devices_per_node:
                current_node_id += 1
                current_device_id = 0
        all_stage_devices.append(stage_devices)

    return distributed_init_method, all_stage_devices