opt.py 13.3 KB
Newer Older
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
1
"""1D OPT model compatible with HuggingFace weights."""
Zhuohan Li's avatar
Zhuohan Li committed
2
3
4
5
import os
import glob
import filelock
from tqdm import tqdm
Woosuk Kwon's avatar
Woosuk Kwon committed
6
7
from typing import Dict, List, Optional, Tuple

Zhuohan Li's avatar
Zhuohan Li committed
8
import numpy as np
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
9
10
11
import torch
from torch import nn
from transformers import OPTConfig
Zhuohan Li's avatar
Zhuohan Li committed
12
from huggingface_hub import snapshot_download
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
13

Woosuk Kwon's avatar
Woosuk Kwon committed
14
15
16
from cacheflow.models import InputMetadata
from cacheflow.models.attention import OPTCacheFlowAttention
from cacheflow.models.sample import Sampler
Zhuohan Li's avatar
Zhuohan Li committed
17
18
19
20
21
from cacheflow.parallel_utils.parallel_state import (
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
from cacheflow.parallel_utils.tensor_parallel import (VocabParallelEmbedding,
                                                      ColumnParallelLinear,
                                                      RowParallelLinear)
22
from cacheflow.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
23
24
25

KVCache = Tuple[torch.Tensor, torch.Tensor]

Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

class OPTLearnedPositionalEmbedding(nn.Embedding):

    def __init__(self, num_embeddings: int, embedding_dim: int):
        # OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 2
        super().__init__(num_embeddings + self.offset, embedding_dim)

    def forward(self, positions: torch.LongTensor):
        return super().forward(positions + self.offset)


class OPTAttention(nn.Module):

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        bias: bool = True,
    ) -> None:
        super().__init__()
        self.embed_dim = embed_dim
Zhuohan Li's avatar
Zhuohan Li committed
49
50
51
52
53
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
        total_num_heads = num_heads
        assert num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = total_num_heads // tensor_model_parallel_world_size
        self.head_dim = embed_dim // total_num_heads
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
54
55
        self.scaling = self.head_dim**-0.5

Woosuk Kwon's avatar
Woosuk Kwon committed
56
        # TODO(woosuk): Fuse the three linear layers into one QKV linear layer.
Zhuohan Li's avatar
Zhuohan Li committed
57
58
59
60
61
62
63
64
65
66
67
68
        self.k_proj = ColumnParallelLinear(embed_dim, embed_dim, bias=bias,
                                           gather_output=False,
                                           perform_initialization=False)
        self.v_proj = ColumnParallelLinear(embed_dim, embed_dim, bias=bias,
                                           gather_output=False,
                                           perform_initialization=False)
        self.q_proj = ColumnParallelLinear(embed_dim, embed_dim, bias=bias,
                                           gather_output=False,
                                           perform_initialization=False)
        self.out_proj = RowParallelLinear(embed_dim, embed_dim, bias=bias,
                                          input_is_parallel=True,
                                          perform_initialization=False)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
69

Woosuk Kwon's avatar
Woosuk Kwon committed
70
71
72
73
74
75
76
77
78
        self.attn = OPTCacheFlowAttention(scale=self.scaling)

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
Zhuohan Li's avatar
Zhuohan Li committed
79
80
81
        q, _ = self.q_proj(hidden_states)
        k, _ = self.k_proj(hidden_states)
        v, _ = self.v_proj(hidden_states)
Woosuk Kwon's avatar
Woosuk Kwon committed
82
83
84
        key_cache, value_cache = kv_cache
        attn_output = self.attn(
            q, k, v, key_cache, value_cache, input_metadata, cache_event)
Zhuohan Li's avatar
Zhuohan Li committed
85
        output, _ = self.out_proj(attn_output)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
86
87
88
89
90
91
92
        return output


class OPTDecoderLayer(nn.Module):

    def __init__(self, config: OPTConfig):
        super().__init__()
Zhuohan Li's avatar
Zhuohan Li committed
93
        self.config = config
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
94
95
96
97
98
99
100
101
102
103
104
105
        self.embed_dim = config.hidden_size
        self.self_attn = OPTAttention(
            embed_dim=self.embed_dim,
            num_heads=config.num_attention_heads,
            bias=config.enable_bias,
        )
        self.do_layer_norm_before = config.do_layer_norm_before
        assert config.activation_function == 'relu'
        self.activation_fn = nn.ReLU()

        self.self_attn_layer_norm = nn.LayerNorm(
            self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
Zhuohan Li's avatar
Zhuohan Li committed
106
107
108
109
110
111
112
113
114
115
        self.fc1 = ColumnParallelLinear(self.embed_dim, config.ffn_dim,
                                        bias=config.enable_bias,
                                        gather_output=False,
                                        perform_initialization=False)
        self.fc2 = RowParallelLinear(config.ffn_dim, self.embed_dim,
                                     bias=config.enable_bias,
                                     input_is_parallel=True,
                                     perform_initialization=False)
        self.final_layer_norm = nn.LayerNorm(
            self.embed_dim, elementwise_affine=config.layer_norm_elementwise_affine)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
116

Woosuk Kwon's avatar
Woosuk Kwon committed
117
118
119
120
121
122
123
    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
124
125
126
127
128
        # Self Attention
        residual = hidden_states
        # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
        if self.do_layer_norm_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)
Woosuk Kwon's avatar
Woosuk Kwon committed
129
130
131
132
133
        hidden_states = self.self_attn(
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
134
135
136
137
138
139
140
141
142
143
        hidden_states = residual + hidden_states
        # 350m applies layer norm AFTER attention
        if not self.do_layer_norm_before:
            hidden_states = self.self_attn_layer_norm(hidden_states)

        # Fully Connected
        residual = hidden_states
        # 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
        if self.do_layer_norm_before:
            hidden_states = self.final_layer_norm(hidden_states)
Zhuohan Li's avatar
Zhuohan Li committed
144
        hidden_states, _ = self.fc1(hidden_states)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
145
        hidden_states = self.activation_fn(hidden_states)
Zhuohan Li's avatar
Zhuohan Li committed
146
        hidden_states, _ = self.fc2(hidden_states)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
147
148
149
150
151
152
153
        hidden_states = residual + hidden_states
        # 350m applies layer norm AFTER attention
        if not self.do_layer_norm_before:
            hidden_states = self.final_layer_norm(hidden_states)
        return hidden_states


Zhuohan Li's avatar
Zhuohan Li committed
154
class OPTDecoder(nn.Module):
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
155
156

    def __init__(self, config: OPTConfig):
Zhuohan Li's avatar
Zhuohan Li committed
157
158
        super().__init__()
        self.config = config
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
159
160
161
162
        self.padding_idx = config.pad_token_id
        self.max_target_positions = config.max_position_embeddings
        self.vocab_size = config.vocab_size

Zhuohan Li's avatar
Zhuohan Li committed
163
164
165
166
167
168
        self.embed_tokens = VocabParallelEmbedding(config.vocab_size,
                                                   config.word_embed_proj_dim,
                                                   perform_initialization=False)
        # Positional embeddings are replicated (not sharded).
        self.embed_positions = OPTLearnedPositionalEmbedding(
            config.max_position_embeddings, config.hidden_size)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
169

Zhuohan Li's avatar
Zhuohan Li committed
170
        # Project out & in will be replicated if they exist.
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
        if config.word_embed_proj_dim != config.hidden_size:
            self.project_out = nn.Linear(config.hidden_size, config.word_embed_proj_dim, bias=False)
        else:
            self.project_out = None

        if config.word_embed_proj_dim != config.hidden_size:
            self.project_in = nn.Linear(config.word_embed_proj_dim, config.hidden_size, bias=False)
        else:
            self.project_in = None

        # Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
        # with checkpoints that have been fine-tuned before transformers v4.20.1
        # see https://github.com/facebookresearch/metaseq/pull/164
        if config.do_layer_norm_before and not config._remove_final_layer_norm:
            self.final_layer_norm = nn.LayerNorm(
                config.hidden_size, elementwise_affine=config.layer_norm_elementwise_affine
            )
        else:
            self.final_layer_norm = None

        self.layers = nn.ModuleList([OPTDecoderLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
197
198
199
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
200
201
202
203
204
205
206
    ) -> torch.Tensor:
        inputs_embeds = self.embed_tokens(input_ids)
        pos_embeds = self.embed_positions(positions)
        if self.project_in is not None:
            inputs_embeds = self.project_in(inputs_embeds)
        hidden_states = inputs_embeds + pos_embeds

Woosuk Kwon's avatar
Woosuk Kwon committed
207
208
209
210
211
212
213
214
        for i in range(len(self.layers)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.layers[i]
            hidden_states = layer(
                hidden_states, kv_caches[i], input_metadata, cache_event)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
215
216
217
218
219
220
221
222

        if self.final_layer_norm is not None:
            hidden_states = self.final_layer_norm(hidden_states)
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
        return hidden_states


Zhuohan Li's avatar
Zhuohan Li committed
223
class OPTModel(nn.Module):
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
224
225

    def __init__(self, config: OPTConfig):
Zhuohan Li's avatar
Zhuohan Li committed
226
        super().__init__()
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
227
228
229
230
231
232
        self.decoder = OPTDecoder(config)

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
233
234
235
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
236
    ) -> torch.Tensor:
Woosuk Kwon's avatar
Woosuk Kwon committed
237
238
        return self.decoder(
            input_ids, positions, kv_caches, input_metadata, cache_events)
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
239
240


Zhuohan Li's avatar
Zhuohan Li committed
241
class OPTForCausalLM(nn.Module):
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
242
243

    def __init__(self, config):
Zhuohan Li's avatar
Zhuohan Li committed
244
245
        super().__init__()
        self.config = config
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
246
        self.model = OPTModel(config)
Zhuohan Li's avatar
Zhuohan Li committed
247
248
249
        # TODO(zhuohan): create a new weight after implementing pipeline
        #                parallelism
        self.lm_head_weight = self.model.decoder.embed_tokens.weight
Woosuk Kwon's avatar
Woosuk Kwon committed
250
        self.sampler = Sampler()
Woosuk Kwon's avatar
Add OPT  
Woosuk Kwon committed
251
252
253
254
255

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
256
257
258
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
259
    ) -> Dict[int, SequenceOutputs]:
Woosuk Kwon's avatar
Woosuk Kwon committed
260
261
        hidden_states = self.model(
            input_ids, positions, kv_caches, input_metadata, cache_events)
Woosuk Kwon's avatar
Woosuk Kwon committed
262
        next_tokens = self.sampler(
Zhuohan Li's avatar
Zhuohan Li committed
263
            self.lm_head_weight, hidden_states, input_metadata)
Woosuk Kwon's avatar
Woosuk Kwon committed
264
        return next_tokens
Zhuohan Li's avatar
Zhuohan Li committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

    _column_parallel_weights = ["embed_tokens.weight",
                                "q_proj.weight", "k_proj.weight",
                                "v_proj.weight", "fc1.weight"]
    _column_parallel_biases = ["q_proj.bias", "k_proj.bias",
                                "v_proj.bias", "fc1.bias"]
    _row_parallel_weights = ["out_proj.weight", "fc2.weight"]

    def load_weights(self, weights_path: str):
        tensor_model_parallel_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()
        for name, param in state_dict.items():
            if "lm_head_weight" in name:
                continue
            loaded_weight = torch.from_numpy(np.load(os.path.join(weights_path,
                                                                  name)))
            for p in (self._column_parallel_weights
                      + self._column_parallel_biases):
                if p in name:
                    shard_size = param.shape[0]
                    loaded_weight = loaded_weight[
                        shard_size * tensor_model_parallel_rank
                        :shard_size * (tensor_model_parallel_rank + 1)]
                    break
            for p in self._row_parallel_weights:
                if p in name:
                    shard_size = param.shape[1]
                    loaded_weight = loaded_weight[
                        :,
                        shard_size * tensor_model_parallel_rank
                        :shard_size * (tensor_model_parallel_rank + 1)]
                    break

            assert param.shape == loaded_weight.shape
            param.data.copy_(loaded_weight)

    @staticmethod
    def download_weights(model_name: str, path: str):
        path = os.path.join(path, f"{model_name}-np")
        path = os.path.abspath(os.path.expanduser(path))
        os.makedirs(path, exist_ok=True)
        lock_path = os.path.join(path, "file_lock")
        lock = filelock.FileLock(lock_path)

        with lock:
            test_weight_path = os.path.join(
                path, "model.decoder.embed_positions.weight")
            if os.path.exists(test_weight_path):
                return path

            folder = snapshot_download(model_name, allow_patterns="*.bin",
                                       cache_dir=os.path.join(path, "cache"))
            bin_files = glob.glob(os.path.join(folder, "*.bin"))

            if "/" in model_name:
                model_name = model_name.split("/")[1].lower()

            for bin_file in tqdm(bin_files, desc="Convert format"):
                state = torch.load(bin_file)
                for name, param in tqdm(state.items(), leave=False):
                    if name.startswith("decoder."):
                        name = "model." + name
                    param_path = os.path.join(path, name)
                    with open(param_path, "wb") as f:
                        np.save(f, param.cpu().detach().numpy())

            return path