conftest.py 8.42 KB
Newer Older
1
import os
Woosuk Kwon's avatar
Woosuk Kwon committed
2
3
4
5
6
7
8
9
10
from typing import List, Optional, Tuple

import pytest
import torch
from transformers import AutoModelForCausalLM

from vllm import LLM, SamplingParams
from vllm.transformers_utils.tokenizer import get_tokenizer

11
12
13
_TEST_DIR = os.path.dirname(__file__)
_TEST_PROMPTS = [os.path.join(_TEST_DIR, "prompts", "example.txt")]
_LONG_PROMPTS = [os.path.join(_TEST_DIR, "prompts", "summary.txt")]
14
15


16
def _read_prompts(filename: str) -> List[str]:
17
    with open(filename, "r") as f:
18
19
        prompts = f.readlines()
        return prompts
Woosuk Kwon's avatar
Woosuk Kwon committed
20
21
22
23


@pytest.fixture
def example_prompts() -> List[str]:
24
25
    prompts = []
    for filename in _TEST_PROMPTS:
26
        prompts += _read_prompts(filename)
27
28
29
30
31
32
33
    return prompts


@pytest.fixture
def example_long_prompts() -> List[str]:
    prompts = []
    for filename in _LONG_PROMPTS:
34
        prompts += _read_prompts(filename)
35
    return prompts
Woosuk Kwon's avatar
Woosuk Kwon committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80


_STR_DTYPE_TO_TORCH_DTYPE = {
    "half": torch.half,
    "bfloat16": torch.bfloat16,
    "float": torch.float,
}


class HfRunner:

    def __init__(
        self,
        model_name: str,
        tokenizer_name: Optional[str] = None,
        dtype: str = "half",
    ) -> None:
        assert dtype in _STR_DTYPE_TO_TORCH_DTYPE
        torch_dtype = _STR_DTYPE_TO_TORCH_DTYPE[dtype]
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch_dtype,
            trust_remote_code=True,
        ).cuda()
        if tokenizer_name is None:
            tokenizer_name = model_name
        self.tokenizer = get_tokenizer(tokenizer_name, trust_remote_code=True)

    def generate(
        self,
        prompts: List[str],
        **kwargs,
    ) -> List[Tuple[List[int], str]]:
        outputs: List[Tuple[List[int], str]] = []
        for prompt in prompts:
            input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
            output_ids = self.model.generate(
                input_ids.cuda(),
                use_cache=True,
                **kwargs,
            )
            output_str = self.tokenizer.batch_decode(
                output_ids,
                skip_special_tokens=True,
                clean_up_tokenization_spaces=False,
81
82
            )
            output_ids = output_ids.cpu().tolist()
Woosuk Kwon's avatar
Woosuk Kwon committed
83
84
85
86
87
88
89
90
            outputs.append((output_ids, output_str))
        return outputs

    def generate_greedy(
        self,
        prompts: List[str],
        max_tokens: int,
    ) -> List[Tuple[List[int], str]]:
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        outputs = self.generate(prompts,
                                do_sample=False,
                                max_new_tokens=max_tokens)
        for i in range(len(outputs)):
            output_ids, output_str = outputs[i]
            outputs[i] = (output_ids[0], output_str[0])
        return outputs

    def generate_beam_search(
        self,
        prompts: List[str],
        beam_width: int,
        max_tokens: int,
    ) -> List[Tuple[List[int], str]]:
        outputs = self.generate(prompts,
                                do_sample=False,
                                max_new_tokens=max_tokens,
                                num_beams=beam_width,
                                num_return_sequences=beam_width)
        for i in range(len(outputs)):
            output_ids, output_str = outputs[i]
            for j in range(len(output_ids)):
                output_ids[j] = [
                    x for x in output_ids[j]
                    if x != self.tokenizer.pad_token_id
                ]
            outputs[i] = (output_ids, output_str)
        return outputs
Woosuk Kwon's avatar
Woosuk Kwon committed
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def generate_greedy_logprobs(
        self,
        prompts: List[str],
        max_tokens: int,
    ) -> List[List[torch.Tensor]]:
        all_logprobs = []
        for prompt in prompts:
            input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids
            output = self.model.generate(
                input_ids.cuda(),
                use_cache=True,
                do_sample=False,
                max_new_tokens=max_tokens,
                output_hidden_states=True,
                return_dict_in_generate=True,
            )
            seq_logprobs = []
            for hidden_states in output.hidden_states:
                last_hidden_states = hidden_states[-1][0]
                logits = torch.matmul(
                    last_hidden_states,
                    self.model.get_output_embeddings().weight.t(),
                )
                if self.model.get_output_embeddings().bias is not None:
                    logits += self.model.get_output_embeddings(
                    ).bias.unsqueeze(0)
                logprobs = torch.nn.functional.log_softmax(logits,
                                                           dim=-1,
                                                           dtype=torch.float32)
                seq_logprobs.append(logprobs)
            all_logprobs.append(seq_logprobs)
        return all_logprobs

Woosuk Kwon's avatar
Woosuk Kwon committed
153
154
155
156
157
158
159
160
161
162
163
164
165

@pytest.fixture
def hf_runner():
    return HfRunner


class VllmRunner:

    def __init__(
        self,
        model_name: str,
        tokenizer_name: Optional[str] = None,
        dtype: str = "half",
166
        disable_log_stats: bool = True,
167
        tensor_parallel_size: int = 1,
168
        **kwargs,
Woosuk Kwon's avatar
Woosuk Kwon committed
169
170
171
172
173
174
175
    ) -> None:
        self.model = LLM(
            model=model_name,
            tokenizer=tokenizer_name,
            trust_remote_code=True,
            dtype=dtype,
            swap_space=0,
176
            disable_log_stats=disable_log_stats,
177
            tensor_parallel_size=tensor_parallel_size,
178
            **kwargs,
Woosuk Kwon's avatar
Woosuk Kwon committed
179
180
181
182
183
184
185
        )

    def generate(
        self,
        prompts: List[str],
        sampling_params: SamplingParams,
    ) -> List[Tuple[List[int], str]]:
186
187
        req_outputs = self.model.generate(prompts,
                                          sampling_params=sampling_params)
Woosuk Kwon's avatar
Woosuk Kwon committed
188
189
190
191
        outputs = []
        for req_output in req_outputs:
            prompt_str = req_output.prompt
            prompt_ids = req_output.prompt_token_ids
192
193
194
195
196
197
198
199
            req_sample_output_ids = []
            req_sample_output_strs = []
            for sample in req_output.outputs:
                output_str = sample.text
                output_ids = sample.token_ids
                req_sample_output_ids.append(prompt_ids + output_ids)
                req_sample_output_strs.append(prompt_str + output_str)
            outputs.append((req_sample_output_ids, req_sample_output_strs))
Woosuk Kwon's avatar
Woosuk Kwon committed
200
201
        return outputs

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def generate_w_logprobs(
        self,
        prompts: List[str],
        sampling_params: SamplingParams,
    ) -> List[Tuple[List[int], str]]:
        assert sampling_params.logprobs is not None

        req_outputs = self.model.generate(prompts,
                                          sampling_params=sampling_params)
        outputs = []
        for req_output in req_outputs:
            for sample in req_output.outputs:
                output_str = sample.text
                output_ids = sample.token_ids
                output_logprobs = sample.logprobs
            outputs.append((output_ids, output_str, output_logprobs))
        return outputs

Woosuk Kwon's avatar
Woosuk Kwon committed
220
221
222
223
224
225
    def generate_greedy(
        self,
        prompts: List[str],
        max_tokens: int,
    ) -> List[Tuple[List[int], str]]:
        greedy_params = SamplingParams(temperature=0.0, max_tokens=max_tokens)
226
        outputs = self.generate(prompts, greedy_params)
227
228
        return [(output_ids[0], output_str[0])
                for output_ids, output_str in outputs]
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
    def generate_greedy_logprobs(
        self,
        prompts: List[str],
        max_tokens: int,
        num_logprobs: int,
    ) -> List[Tuple[List[int], str]]:
        greedy_logprobs_params = SamplingParams(temperature=0.0,
                                                max_tokens=max_tokens,
                                                logprobs=num_logprobs)
        outputs = self.generate_w_logprobs(prompts, greedy_logprobs_params)

        return [(output_ids, output_str, output_logprobs)
                for output_ids, output_str, output_logprobs in outputs]

244
245
246
247
248
249
250
251
252
253
254
255
    def generate_beam_search(
        self,
        prompts: List[str],
        beam_width: int,
        max_tokens: int,
    ) -> List[Tuple[List[int], str]]:
        beam_search_params = SamplingParams(n=beam_width,
                                            use_beam_search=True,
                                            temperature=0.0,
                                            max_tokens=max_tokens)
        outputs = self.generate(prompts, beam_search_params)
        return outputs
Woosuk Kwon's avatar
Woosuk Kwon committed
256
257
258
259
260


@pytest.fixture
def vllm_runner():
    return VllmRunner