test_comm_ops.py 3.24 KB
Newer Older
1
2
3
4
"""Test the communication operators.

Run `pytest tests/distributed/test_comm_ops.py --forked`.
"""
Zhuohan Li's avatar
Zhuohan Li committed
5
from multiprocessing import Process, set_start_method
6
7
8
9
10

import pytest
import torch

from vllm.config import ParallelConfig
11
from vllm.utils import get_open_port
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from vllm.model_executor.parallel_utils.communication_op import (
    tensor_model_parallel_all_reduce,
    tensor_model_parallel_all_gather,
)
from vllm.worker.worker import _init_distributed_environment


def init_test_distributed_environment(pipeline_parallel_size: int,
                                      tensor_parallel_size: int, rank: int,
                                      distributed_init_port: str):
    parallel_config = ParallelConfig(pipeline_parallel_size,
                                     tensor_parallel_size,
                                     worker_use_ray=True)
    distributed_init_method = f"tcp://localhost:{distributed_init_port}"
    torch.cuda.set_device(rank)
    _init_distributed_environment(parallel_config, rank,
                                  distributed_init_method)


def all_reduce_test_worker(tensor_parallel_size: int, rank: int,
                           distributed_init_port: str):
    init_test_distributed_environment(1, tensor_parallel_size, rank,
                                      distributed_init_port)
    num_elements = 8
    all_tensors = [
        torch.arange(num_elements, dtype=torch.float32, device="cuda") *
        (r + 1) for r in range(tensor_parallel_size)
    ]
    expected = torch.sum(torch.stack(all_tensors, dim=0), dim=0)
    t = all_tensors[rank]
    t = tensor_model_parallel_all_reduce(t)
    assert torch.allclose(t, expected)


def all_gather_test_worker(tensor_parallel_size: int, rank: int,
                           distributed_init_port: str):
    init_test_distributed_environment(1, tensor_parallel_size, rank,
                                      distributed_init_port)
    num_dimensions = 3
    tensor_size = list(range(2, num_dimensions + 2))
    total_size = 1
    for s in tensor_size:
        total_size *= s
    for all_gather_dimension in range(num_dimensions):
        all_tensors = [
            torch.arange(total_size, dtype=torch.float32,
                         device="cuda").reshape(tensor_size) * (r + 1)
            for r in range(tensor_parallel_size)
        ]
        expected = torch.cat(all_tensors, dim=all_gather_dimension)
        t = all_tensors[rank]
        t = tensor_model_parallel_all_gather(t, all_gather_dimension)
        assert torch.allclose(t, expected)


@pytest.mark.skipif(torch.cuda.device_count() < 2,
                    reason="Need at least 2 GPUs to run the test.")
@pytest.mark.parametrize("tensor_parallel_size", [2])
@pytest.mark.parametrize("test_target",
                         [all_reduce_test_worker, all_gather_test_worker])
def test_multi_process_tensor_parallel(tensor_parallel_size, test_target):
Zhuohan Li's avatar
Zhuohan Li committed
73
    set_start_method("spawn", force=True)
74
75
76
77
78
79
80
81
82
83
    distributed_init_port = get_open_port()
    processes = []
    for rank in range(tensor_parallel_size):
        p = Process(target=test_target,
                    args=(tensor_parallel_size, rank, distributed_init_port))
        p.start()
        processes.append(p)
    for p in processes:
        p.join()
    assert all(p.exitcode == 0 for p in processes)