llm.py 5.56 KB
Newer Older
1
from typing import List, Optional, Union
2

3
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
4
5
6
7
8
9
10
11
12
13
from tqdm import tqdm

from cacheflow.outputs import RequestOutput
from cacheflow.sampling_params import SamplingParams
from cacheflow.server.arg_utils import ServerArgs
from cacheflow.server.llm_server import LLMServer
from cacheflow.utils import Counter


class LLM:
Woosuk Kwon's avatar
Woosuk Kwon committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    """An LLM for generating texts from given prompts and sampling parameters.

    This class includes a tokenizer, a language model (possibly distributed
    across multiple GPUs), and GPU memory space allocated for intermediate
    states (aka KV cache). Given a batch of prompts and sampling parameters,
    this class generates texts from the model, using an intelligent batching
    mechanism and efficient memory management.

    NOTE: This class is intended to be used for offline inference. For online
    serving, use the `AsyncLLMServer` class instead.
    NOTE: For the comprehensive list of arguments, see `ServerArgs`.

    Args:
        model: The name or path of a HuggingFace Transformers model.
        tensor_parallel_size: The number of GPUs to use for distributed
            execution with tensor parallelism.
        dtype: The data type for the model weights and activations. Currently,
            we support `float16` and `bfloat16`. If `default`, we use the
            `torch_dtype` attribute of the model config. If the `torch_dtype`
            is `float32`, we use `float16` instead.
        seed: The seed to initialize the random number generator for sampling.
    """
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

    def __init__(
        self,
        model: str,
        tensor_parallel_size: int = 1,
        dtype: str = "default",
        seed: int = 0,
        **kwargs,
    ) -> None:
        if "disable_log_stats" not in kwargs:
            kwargs["disable_log_stats"] = True
        server_args = ServerArgs(
            model=model,
            tensor_parallel_size=tensor_parallel_size,
            dtype=dtype,
            seed=seed,
            **kwargs,
        )
        self.llm_server = LLMServer.from_server_args(server_args)
        self.request_counter = Counter()

57
58
59
60
61
    def get_tokenizer(
        self,
    ) -> Union[PreTrainedTokenizer, PreTrainedTokenizerFast]:
        return self.llm_server.tokenizer

62
63
    def generate(
        self,
Woosuk Kwon's avatar
Woosuk Kwon committed
64
        prompts: Optional[Union[str, List[str]]] = None,
65
        sampling_params: Optional[SamplingParams] = None,
66
        prompt_token_ids: Optional[List[List[int]]] = None,
67
68
        use_tqdm: bool = True,
    ) -> List[RequestOutput]:
Woosuk Kwon's avatar
Woosuk Kwon committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        """Generates the completions for the input prompts.

        NOTE: This class automatically batches the given prompts, considering
        the memory constraint. For the best performance, put all of your prompts
        into a single list and pass it to this method.

        Args:
            prompts: A list of prompts to generate completions for.
            sampling_params: The sampling parameters for text generation. If
                None, we use the default sampling parameters.
            prompt_token_ids: A list of token IDs for the prompts. If None, we
                use the tokenizer to convert the prompts to token IDs.
            use_tqdm: Whether to use tqdm to display the progress bar.

        Returns:
            A list of `RequestOutput` objects containing the generated
            completions in the same order as the input prompts.
        """
        if prompts is None and prompt_token_ids is None:
            raise ValueError("Either prompts or prompt_token_ids must be "
                             "provided.")
Woosuk Kwon's avatar
Woosuk Kwon committed
90
        if isinstance(prompts, str):
Woosuk Kwon's avatar
Woosuk Kwon committed
91
            # Convert a single prompt to a list.
Woosuk Kwon's avatar
Woosuk Kwon committed
92
            prompts = [prompts]
Woosuk Kwon's avatar
Woosuk Kwon committed
93
94
95
96
        if prompts is not None and prompt_token_ids is not None:
            if len(prompts) != len(prompt_token_ids):
                raise ValueError("The lengths of prompts and prompt_token_ids "
                                 "must be the same.")
97
        if sampling_params is None:
98
            # Use default sampling params.
99
            sampling_params = SamplingParams()
Woosuk Kwon's avatar
Woosuk Kwon committed
100

101
        # Add requests to the server.
Woosuk Kwon's avatar
Woosuk Kwon committed
102
103
104
105
106
107
        if prompts is not None:
            num_requests = len(prompts)
        else:
            num_requests = len(prompt_token_ids)
        for i in range(num_requests):
            prompt = prompts[i] if prompts is not None else None
108
109
110
111
            if prompt_token_ids is None:
                token_ids = None
            else:
                token_ids = prompt_token_ids[i]
112
113
            self._add_request(prompt, sampling_params, token_ids)
        return self._run_server(use_tqdm)
114

115
116
    def _add_request(
        self,
Woosuk Kwon's avatar
Woosuk Kwon committed
117
        prompt: Optional[str],
118
119
120
121
122
123
124
125
126
127
128
129
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]],
    ) -> None:
        request_id = str(next(self.request_counter))
        self.llm_server.add_request(request_id, prompt, sampling_params,
                                    prompt_token_ids)

    def _run_server(self, use_tqdm: bool) -> List[RequestOutput]:
        # Initialize tqdm.
        if use_tqdm:
            num_requests = self.llm_server.get_num_unfinished_requests()
            pbar = tqdm(total=num_requests, desc="Processed prompts")
130
131
132
133
134
        # Run the server.
        outputs: List[RequestOutput] = []
        while self.llm_server.has_unfinished_requests():
            step_outputs = self.llm_server.step()
            for output in step_outputs:
Woosuk Kwon's avatar
Woosuk Kwon committed
135
                if output.finished():
136
137
138
139
140
141
                    outputs.append(output)
                    if use_tqdm:
                        pbar.update(1)
        if use_tqdm:
            pbar.close()
        return outputs