server.py 7 KB
Newer Older
Woosuk Kwon's avatar
Woosuk Kwon committed
1
import argparse
2
from typing import List, Tuple
Zhuohan Li's avatar
Zhuohan Li committed
3
4
5
import random

import ray
Woosuk Kwon's avatar
Woosuk Kwon committed
6
7

from cacheflow.master.scheduler import Scheduler
8
from cacheflow.models import get_memory_analyzer
Zhuohan Li's avatar
Zhuohan Li committed
9
from cacheflow.worker.controller import Controller, DeviceID
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
from cacheflow.sequence import SequenceGroup
from cacheflow.sampling_params import SamplingParams

class Server:
    def __init__(
        self,
        model: str,
        model_path: str,
        pipeline_parallel_size: int,
        tensor_parallel_size: int,
        block_size: int,
        dtype: str,
        seed: int,
        swap_space: int,
        max_batch_size: int,
        num_nodes: int,
        num_devices_per_node: int,
        distributed_init_method: str,
        all_stage_devices: List[List[DeviceID]],
        gpu_memory: int,
        cpu_memory: int,
    ):
        self.num_nodes = num_nodes
        self.num_devices_per_node = num_devices_per_node
        self.world_size = pipeline_parallel_size * tensor_parallel_size

        self.memory_analyzer = get_memory_analyzer(
            model_name=model,
            block_size=block_size,
            dtype=dtype,
            gpu_memory=gpu_memory,
            cpu_memory=cpu_memory,
            tensor_parallel_size=tensor_parallel_size,
        )
        self.num_gpu_blocks = self.memory_analyzer.get_max_num_gpu_blocks(
            max_num_batched_tokens=max_batch_size)
        self.num_cpu_blocks = self.memory_analyzer.get_max_num_cpu_blocks(
            swap_space=swap_space)
        print(f'# GPU blocks: {self.num_gpu_blocks}, '
              f'# CPU blocks: {self.num_cpu_blocks}')

        # Create a controller for each pipeline stage.
        self.controllers: List[Controller] = []
        for i in range(pipeline_parallel_size):
            controller = Controller(
                stage_id=i,
                stage_devices=all_stage_devices[i],
                world_size=self.world_size,
                pipeline_parallel_size=pipeline_parallel_size,
                tensor_parallel_size=tensor_parallel_size,
                distributed_init_method=distributed_init_method,
                model_name=model,
                block_size=block_size,
                num_gpu_blocks=self.num_gpu_blocks,
                num_cpu_blocks=self.num_cpu_blocks,
                dtype=dtype,
                seed=seed,
                model_path=model_path,
            )
            self.controllers.append(controller)

        # Create a scheduler.
        self.scheduler = Scheduler(
            controllers=self.controllers,
            block_size=block_size,
            num_gpu_blocks=self.num_gpu_blocks,
            num_cpu_blocks=self.num_cpu_blocks,
            max_num_batched_tokens=max_batch_size,
        )
        # Connect the controllers.
        for i in range(len(self.controllers) - 1):
            self.controllers[i].set_next(self.controllers[i + 1])
        self.controllers[-1].set_next(self.scheduler)

    def add_sequence_groups(
        self,
        sequence_groups: List[Tuple[SequenceGroup, SamplingParams]]
    ):
        self.scheduler.add_sequence_groups(sequence_groups)

    def step(self):
        return self.scheduler.step()

    def has_unfinished_requests(self):
        return (self.scheduler.pending or self.scheduler.running or
                self.scheduler.swapped)
Zhuohan Li's avatar
Zhuohan Li committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163


def initialize_ray_cluster(
    address: str = 'auto',
    pipeline_parallel_size: int = 1,
    tensor_parallel_size: int = 1,
) -> Tuple[int, int, str, List[List[DeviceID]]]:
    # Connect to a ray cluster.
    ray.init(address=address)

    # Assume we have a uniform cluster that each node has the same number of
    # GPUs for now.
    valid_node_resources = []
    num_devices_per_node = None
    for node in ray.nodes():
        if (not node['Alive']) or node['Resources']['GPU'] <= 0:
            continue
        if num_devices_per_node is None:
            num_devices_per_node = node['Resources']['GPU']
        else:
            assert num_devices_per_node == node['Resources']['GPU'], (
                "The number of GPUs per node is not uniform.")
        for key in node['Resources']:
            if key.startswith('node:'):
                valid_node_resources.append(key)

    num_nodes = len(valid_node_resources)

    assert (pipeline_parallel_size * tensor_parallel_size
            <= num_nodes * num_devices_per_node), (
                "The number of required GPUs exceeds the total number of "
                "available GPUs.")
    if tensor_parallel_size >= num_devices_per_node:
        assert tensor_parallel_size % num_devices_per_node == 0, (
            "The number of tensor parallelism is not divisible by the "
            "number of GPUs per node.")
    else:
        assert num_devices_per_node % tensor_parallel_size == 0, (
            "The number of GPUs per node is not divisible by the number "
            "of tensor parallelism.")

    # Assign GPUs to pipeline stages.
    rank = 0
    current_node_id = 0
    current_device_id = 0
    distributed_init_method = None
    all_stage_devices = []

    for i in range(pipeline_parallel_size):
        stage_devices = []
        for j in range(tensor_parallel_size):
            node_resource = valid_node_resources[current_node_id]
            stage_devices.append((rank, node_resource, current_device_id))
            if distributed_init_method is None:
                ip = node_resource.split("node:")[-1]
                port = random.randint(10000, 20000)
                distributed_init_method = f"tcp://{ip}:{port}"
            rank += 1
            current_device_id += 1
            if current_device_id >= num_devices_per_node:
                current_node_id += 1
                current_device_id = 0
        all_stage_devices.append(stage_devices)

    return (num_nodes, num_devices_per_node, distributed_init_method,
            all_stage_devices)


164
def add_server_arguments(parser: argparse.ArgumentParser):
Zhuohan Li's avatar
Zhuohan Li committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    # Model arguments
    parser.add_argument('--model', type=str, default='facebook/opt-125m', help='model name')
    parser.add_argument('--model-path', type=str, default='~/.cacheflow/model_weights',
                        help='model path to download and load the weights')
    # Parallel arguments
    parser.add_argument('--pipeline-parallel-size', type=int, default=1, help='number of pipeline stages')
    parser.add_argument('--tensor-parallel-size', type=int, default=1, help='number of tensor parallel replicas')
    # KV cache arguments
    parser.add_argument('--block-size', type=int, default=8, choices=[8, 16], help='token block size')
    # NOTE(woosuk): If FlashAttention is used, the float data type is not supported.
    parser.add_argument('--dtype', type=str, default='half', choices=['half', 'float'], help='data type')
    # TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    parser.add_argument('--swap-space', type=int, default=20, help='CPU swap space size (GiB) per GPU')
    parser.add_argument('--max-batch-size', type=int, default=2560, help='maximum number of batched tokens')
180
    return parser