gpt2.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# coding=utf-8
# Copyright 2023 The CacheFlow team.
# Adapted from https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt2/modeling_gpt2.py
#
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Woosuk Kwon's avatar
Woosuk Kwon committed
19
20
21
22
23
24
25
"""1D GPT-2 model compatible with HuggingFace weights."""
from typing import Dict, List, Optional, Tuple

import torch
from torch import nn
from transformers import GPT2Config

26
27
28
29
30
31
from cacheflow.model_executor.input_metadata import InputMetadata
from cacheflow.model_executor.layers.attention import GPTCacheFlowAttention
from cacheflow.model_executor.layers.sampler import Sampler
from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator,
                                                   load_tensor_parallel_weights)
from cacheflow.model_executor.parallel_utils.parallel_state import (
Woosuk Kwon's avatar
Woosuk Kwon committed
32
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
33
34
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
    VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
Woosuk Kwon's avatar
Woosuk Kwon committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
from cacheflow.sequence import SequenceOutputs

KVCache = Tuple[torch.Tensor, torch.Tensor]


class GPT2Attention(nn.Module):

    def __init__(self, config: GPT2Config):
        super().__init__()
        self.hidden_size = config.hidden_size
        total_num_heads = config.num_attention_heads
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
        assert total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = total_num_heads // tensor_model_parallel_world_size
        self.head_dim = self.hidden_size // total_num_heads
        self.scale = self.head_dim ** -0.5

        self.c_attn = ColumnParallelLinear(self.hidden_size, 3 * self.hidden_size, bias=True,
                                           gather_output=False,
                                           perform_initialization=False)
        self.c_proj = RowParallelLinear(self.hidden_size, self.hidden_size, bias=True,
                                        input_is_parallel=True,
                                        perform_initialization=False)
        self.attn = GPTCacheFlowAttention(scale=self.scale)

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        qkv, _ = self.c_attn(hidden_states)
        q, k, v = qkv.chunk(chunks=3, dim=-1)
        key_cache, value_cache = kv_cache
        attn_output = self.attn(
            q, k, v, key_cache, value_cache, input_metadata, cache_event)
        attn_output, _ = self.c_proj(attn_output)
        return attn_output


class GPT2MLP(nn.Module):

    def __init__(
        self,
        intermediate_size: int,
        config: GPT2Config,
    ):
        super().__init__()
        hidden_size = config.hidden_size
        self.c_fc = ColumnParallelLinear(hidden_size, intermediate_size,
                                         bias=True, gather_output=False,
                                         perform_initialization=False)
        self.c_proj = RowParallelLinear(intermediate_size, hidden_size,
                                        bias=True, input_is_parallel=True,
                                        perform_initialization=False)

        act_fn = config.activation_function
        if act_fn != "gelu_new":
            raise ValueError(f"Unsupported activation: {act_fn}. "
                             "GPT-2 only supports gelu_new for now.")
        self.act = torch.nn.GELU(approximate="tanh")

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states, _ = self.c_fc(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.c_proj(hidden_states)
        return hidden_states


class GPT2Block(nn.Module):

    def __init__(self, config: GPT2Config):
        super().__init__()
        hidden_size = config.hidden_size
        inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size

        self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.attn = GPT2Attention(config)
        self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
        self.mlp = GPT2MLP(inner_dim, config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        residual = hidden_states
        hidden_states = self.ln_1(hidden_states)
        attn_output = self.attn(
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        # residual connection
        hidden_states = attn_output + residual

        residual = hidden_states
        hidden_states = self.ln_2(hidden_states)
        feed_forward_hidden_states = self.mlp(hidden_states)
        # residual connection
        hidden_states = residual + feed_forward_hidden_states
        return hidden_states


class GPT2Model(nn.Module):

    def __init__(self, config: GPT2Config):
        super().__init__()
        self.config = config
        assert config.add_cross_attention == False
        assert config.scale_attn_by_inverse_layer_idx == False
        assert config.reorder_and_upcast_attn == False
        self.embed_dim = config.hidden_size

        # Optimization: While the vocab size of GPT-2 is 50257, we extend it
        # to 50304 in order to make it divisible by 64.
        # This improves performance since GPUs are faster if the dimension
        # is divisible by 64. In addition, it allows us to shard the embedding
        # layer across 2, 4, 8, or more GPUs.
        vocab_size = ((config.vocab_size + 63) // 64) * 64
        self.wte = VocabParallelEmbedding(vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
        self.h = nn.ModuleList(
            [GPT2Block(config) for _ in range(config.num_hidden_layers)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)

    def forward(
        self,
        input_ids: torch.LongTensor,
        position_ids: torch.LongTensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds

        for i in range(len(self.h)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.h[i]
            hidden_states = layer(
                hidden_states, kv_caches[i], input_metadata, cache_event)

        hidden_states = self.ln_f(hidden_states)
        return hidden_states


class GPT2LMHeadModel(nn.Module):

    def __init__(self, config: GPT2Config):
        super().__init__()
        self.config = config
        self.transformer = GPT2Model(config)
        # TODO(zhuohan): create a new weight after implementing pipeline
        #                parallelism
        self.lm_head_weight = self.transformer.wte.weight
        self.sampler = Sampler(config.vocab_size)

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> Dict[int, SequenceOutputs]:
        hidden_states = self.transformer(
            input_ids, positions, kv_caches, input_metadata, cache_events)
        next_tokens = self.sampler(
            self.lm_head_weight, hidden_states, input_metadata)
        return next_tokens

    _column_parallel_weights = ["wte.weight", "c_fc.weight", "c_fc.bias"]
    _row_parallel_weights = ["c_proj.weight"]

    def load_weights(self, model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     use_np_cache: bool = False):
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
        tensor_model_parallel_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()

        for name, loaded_weight in hf_model_weights_iterator(
            model_name_or_path, cache_dir, use_np_cache):
            if "lm_head.weight" in name:
                # GPT-2 ties the weights of the embedding layer and the final
                # linear layer.
                continue
            if ".attn.bias" in name:
                # Skip attention mask.
                # NOTE: "c_attn.bias" should not be skipped.
                continue
            name = "transformer." + name

            # The HF's GPT-2 implementation uses Conv1D instead of Linear.
            # Because of this, we need to transpose the weights.
            for conv1d_weight_name in ["c_attn", "c_proj", "c_fc"]:
                if conv1d_weight_name not in name:
                    continue
                if not name.endswith(".weight"):
                    continue
                loaded_weight = loaded_weight.t()
            param = state_dict[name]

            if name == "transformer.wte.weight":
                # Consider padding in the vocab size.
                padded_vocab_size = param.shape[0] * tensor_model_parallel_world_size
                num_extra_rows = padded_vocab_size - self.config.vocab_size
                extra_rows = torch.empty(num_extra_rows, loaded_weight.shape[1])
                extra_rows = extra_rows.to(loaded_weight)
                loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)

            # For the fused QKV linear layer, manually shard the weights.
            if "c_attn" in name:
                # GPT-2's fused QKV has the shape of [3 * num_heads * head_size, hidden_size].
                # When tensor parallelism is used, we shard the weights along the head dimension.
                total_num_heads = self.config.num_attention_heads
                hidden_size = self.config.hidden_size
                head_size = hidden_size // total_num_heads
                num_heads = total_num_heads // tensor_model_parallel_world_size
                head_start = tensor_model_parallel_rank * num_heads
                head_end = (tensor_model_parallel_rank + 1) * num_heads

                if name.endswith(".weight"):
                    loaded_weight = loaded_weight.view(3, total_num_heads, head_size, hidden_size)
                    loaded_weight = loaded_weight[:, head_start:head_end, :, :]
                    loaded_weight = loaded_weight.reshape(-1, hidden_size)
                elif name.endswith(".bias"):
                    loaded_weight = loaded_weight.view(3, total_num_heads, head_size)
                    loaded_weight = loaded_weight[:, head_start:head_end, :]
                    loaded_weight = loaded_weight.reshape(-1)
                else:
                    raise ValueError(f"Unexpected parameter name {name}")
            load_tensor_parallel_weights(param, loaded_weight, name,
                                         self._column_parallel_weights,
278
279
                                         self._row_parallel_weights,
                                         tensor_model_parallel_rank)