test_openai_server.py 19.4 KB
Newer Older
1
import os
2
import subprocess
3
import time
4
5
6
7
8
9

import sys
import pytest
import requests
import ray  # using Ray for overall ease of process management, parallel requests, and debugging.
import openai  # use the official client for correctness check
10
from huggingface_hub import snapshot_download  # downloading lora to test lora requests
11

12
13
14
15
16
# imports for guided decoding tests
import json
import jsonschema
import re

17
18
from vllm.transformers_utils.tokenizer import get_tokenizer

19
20
MAX_SERVER_START_WAIT_S = 600  # wait for server to start for 60 seconds
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"  # any model with a chat template should work here
21
LORA_NAME = "typeof/zephyr-7b-beta-lora"  # technically this needs Mistral-7B-v0.1 as base, but we're not testing generation quality here
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
TEST_SCHEMA = {
    "type": "object",
    "properties": {
        "name": {
            "type": "string"
        },
        "age": {
            "type": "integer"
        },
        "skills": {
            "type": "array",
            "items": {
                "type": "string",
                "maxLength": 10
            },
            "minItems": 3
        },
        "work history": {
            "type": "array",
            "items": {
                "type": "object",
                "properties": {
                    "company": {
                        "type": "string"
                    },
                    "duration": {
                        "type": "string"
                    },
                    "position": {
                        "type": "string"
                    }
                },
                "required": ["company", "position"]
            }
        }
    },
    "required": ["name", "age", "skills", "work history"]
}

TEST_REGEX = r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}" + \
             r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)"

TEST_CHOICE = [
    "Python", "Java", "JavaScript", "C++", "C#", "PHP", "TypeScript", "Ruby",
    "Swift", "Kotlin"
]

70
71
72
73
74
75
76
pytestmark = pytest.mark.asyncio


@ray.remote(num_gpus=1)
class ServerRunner:

    def __init__(self, args):
77
78
        env = os.environ.copy()
        env["PYTHONUNBUFFERED"] = "1"
79
80
        self.proc = subprocess.Popen(
            ["python3", "-m", "vllm.entrypoints.openai.api_server"] + args,
81
            env=env,
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
            stdout=sys.stdout,
            stderr=sys.stderr,
        )
        self._wait_for_server()

    def ready(self):
        return True

    def _wait_for_server(self):
        # run health check
        start = time.time()
        while True:
            try:
                if requests.get(
                        "http://localhost:8000/health").status_code == 200:
                    break
            except Exception as err:
                if self.proc.poll() is not None:
                    raise RuntimeError("Server exited unexpectedly.") from err

                time.sleep(0.5)
                if time.time() - start > MAX_SERVER_START_WAIT_S:
                    raise RuntimeError(
                        "Server failed to start in time.") from err

    def __del__(self):
        if hasattr(self, "proc"):
            self.proc.terminate()


@pytest.fixture(scope="session")
113
114
115
116
117
118
def zephyr_lora_files():
    return snapshot_download(repo_id=LORA_NAME)


@pytest.fixture(scope="session")
def server(zephyr_lora_files):
119
120
121
122
123
124
125
    ray.init()
    server_runner = ServerRunner.remote([
        "--model",
        MODEL_NAME,
        "--dtype",
        "bfloat16",  # use half precision for speed and memory savings in CI environment
        "--max-model-len",
126
127
        "8192",
        "--enforce-eager",
128
129
130
131
132
133
134
135
136
137
138
        # lora config below
        "--enable-lora",
        "--lora-modules",
        f"zephyr-lora={zephyr_lora_files}",
        f"zephyr-lora2={zephyr_lora_files}",
        "--max-lora-rank",
        "64",
        "--max-cpu-loras",
        "2",
        "--max-num-seqs",
        "128"
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    ])
    ray.get(server_runner.ready.remote())
    yield server_runner
    ray.shutdown()


@pytest.fixture(scope="session")
def client():
    client = openai.AsyncOpenAI(
        base_url="http://localhost:8000/v1",
        api_key="token-abc123",
    )
    yield client


154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
async def test_check_models(server, client: openai.AsyncOpenAI):
    models = await client.models.list()
    models = models.data
    served_model = models[0]
    lora_models = models[1:]
    assert served_model.id == MODEL_NAME
    assert all(model.root == MODEL_NAME for model in models)
    assert lora_models[0].id == "zephyr-lora"
    assert lora_models[1].id == "zephyr-lora2"


@pytest.mark.parametrize(
    # first test base model, then test loras
    "model_name",
    [MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_single_completion(server, client: openai.AsyncOpenAI,
                                 model_name: str):
    completion = await client.completions.create(model=model_name,
173
174
175
176
177
178
179
180
181
182
183
184
                                                 prompt="Hello, my name is",
                                                 max_tokens=5,
                                                 temperature=0.0)

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 1
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5
    assert completion.choices[0].finish_reason == "length"
    assert completion.usage == openai.types.CompletionUsage(
        completion_tokens=5, prompt_tokens=6, total_tokens=11)

185
186
187
188
189
190
191
192
193
194
    # test using token IDs
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=[0, 0, 0, 0, 0],
        max_tokens=5,
        temperature=0.0,
    )
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5

195

196
197
198
199
200
201
202
@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_single_chat_session(server, client: openai.AsyncOpenAI,
                                   model_name: str):
203
204
205
206
207
208
209
210
211
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "what is 1+1?"
    }]

    # test single completion
212
213
214
215
216
    chat_completion = await client.chat.completions.create(model=model_name,
                                                           messages=messages,
                                                           max_tokens=10,
                                                           logprobs=True,
                                                           top_logprobs=10)
217
218
219
220
    assert chat_completion.id is not None
    assert chat_completion.choices is not None and len(
        chat_completion.choices) == 1
    assert chat_completion.choices[0].message is not None
221
222
223
    assert chat_completion.choices[0].logprobs is not None
    assert chat_completion.choices[0].logprobs.top_logprobs is not None
    assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 10
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    message = chat_completion.choices[0].message
    assert message.content is not None and len(message.content) >= 10
    assert message.role == "assistant"
    messages.append({"role": "assistant", "content": message.content})

    # test multi-turn dialogue
    messages.append({"role": "user", "content": "express your result in json"})
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
    )
    message = chat_completion.choices[0].message
    assert message.content is not None and len(message.content) >= 0


240
241
242
243
244
245
246
@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_completion_streaming(server, client: openai.AsyncOpenAI,
                                    model_name: str):
247
248
249
    prompt = "What is an LLM?"

    single_completion = await client.completions.create(
250
        model=model_name,
251
252
253
254
255
256
257
        prompt=prompt,
        max_tokens=5,
        temperature=0.0,
    )
    single_output = single_completion.choices[0].text
    single_usage = single_completion.usage

258
259
260
261
262
    stream = await client.completions.create(model=model_name,
                                             prompt=prompt,
                                             max_tokens=5,
                                             temperature=0.0,
                                             stream=True)
263
264
265
266
267
268
269
270
    chunks = []
    async for chunk in stream:
        chunks.append(chunk.choices[0].text)
    assert chunk.choices[0].finish_reason == "length"
    assert chunk.usage == single_usage
    assert "".join(chunks) == single_output


271
272
273
274
275
276
277
@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_chat_streaming(server, client: openai.AsyncOpenAI,
                              model_name: str):
278
279
280
281
282
283
284
285
286
287
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "what is 1+1?"
    }]

    # test single completion
    chat_completion = await client.chat.completions.create(
288
        model=model_name,
289
290
291
292
293
294
295
296
297
        messages=messages,
        max_tokens=10,
        temperature=0.0,
    )
    output = chat_completion.choices[0].message.content
    stop_reason = chat_completion.choices[0].finish_reason

    # test streaming
    stream = await client.chat.completions.create(
298
        model=model_name,
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
        messages=messages,
        max_tokens=10,
        temperature=0.0,
        stream=True,
    )
    chunks = []
    async for chunk in stream:
        delta = chunk.choices[0].delta
        if delta.role:
            assert delta.role == "assistant"
        if delta.content:
            chunks.append(delta.content)
    assert chunk.choices[0].finish_reason == stop_reason
    assert "".join(chunks) == output


315
316
317
318
319
320
321
@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_batch_completions(server, client: openai.AsyncOpenAI,
                                 model_name: str):
322
323
    # test simple list
    batch = await client.completions.create(
324
        model=model_name,
325
326
327
328
329
330
331
332
333
        prompt=["Hello, my name is", "Hello, my name is"],
        max_tokens=5,
        temperature=0.0,
    )
    assert len(batch.choices) == 2
    assert batch.choices[0].text == batch.choices[1].text

    # test n = 2
    batch = await client.completions.create(
334
        model=model_name,
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
        prompt=["Hello, my name is", "Hello, my name is"],
        n=2,
        max_tokens=5,
        temperature=0.0,
        extra_body=dict(
            # NOTE: this has to be true for n > 1 in vLLM, but not necessary for official client.
            use_beam_search=True),
    )
    assert len(batch.choices) == 4
    assert batch.choices[0].text != batch.choices[
        1].text, "beam search should be different"
    assert batch.choices[0].text == batch.choices[
        2].text, "two copies of the same prompt should be the same"
    assert batch.choices[1].text == batch.choices[
        3].text, "two copies of the same prompt should be the same"

    # test streaming
    batch = await client.completions.create(
353
        model=model_name,
354
355
356
357
358
359
360
361
362
363
364
365
366
        prompt=["Hello, my name is", "Hello, my name is"],
        max_tokens=5,
        temperature=0.0,
        stream=True,
    )
    texts = [""] * 2
    async for chunk in batch:
        assert len(chunk.choices) == 1
        choice = chunk.choices[0]
        texts[choice.index] += choice.text
    assert texts[0] == texts[1]


367
368
369
370
371
372
373
374
375
376
377
378
379
async def test_logits_bias(server, client: openai.AsyncOpenAI):
    prompt = "Hello, my name is"
    max_tokens = 5
    tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)

    # Test exclusive selection
    token_id = 1000
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=0.0,
        logit_bias={str(token_id): 100},
380
        seed=42,
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    )
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5
    response_tokens = tokenizer(completion.choices[0].text,
                                add_special_tokens=False)["input_ids"]
    expected_tokens = tokenizer(tokenizer.decode([token_id] * 5),
                                add_special_tokens=False)["input_ids"]
    assert all([
        response == expected
        for response, expected in zip(response_tokens, expected_tokens)
    ])

    # Test ban
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=0.0,
    )
    response_tokens = tokenizer(completion.choices[0].text,
                                add_special_tokens=False)["input_ids"]
    first_response = completion.choices[0].text
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=0.0,
        logit_bias={str(token): -100
                    for token in response_tokens},
    )
    assert first_response != completion.choices[0].text


414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
async def test_guided_json_completion(server, client: openai.AsyncOpenAI):
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=
        f"Give an example JSON for an employee profile that fits this schema: {TEST_SCHEMA}",
        n=3,
        temperature=1.0,
        max_tokens=500,
        extra_body=dict(guided_json=TEST_SCHEMA))

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 3
    for i in range(3):
        assert completion.choices[i].text is not None
        output_json = json.loads(completion.choices[i].text)
        jsonschema.validate(instance=output_json, schema=TEST_SCHEMA)


async def test_guided_json_chat(server, client: openai.AsyncOpenAI):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "Give an example JSON for an employee profile that " + \
                    f"fits this schema: {TEST_SCHEMA}"
    }]
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=500,
        extra_body=dict(guided_json=TEST_SCHEMA))
    message = chat_completion.choices[0].message
    assert message.content is not None
    json1 = json.loads(message.content)
    jsonschema.validate(instance=json1, schema=TEST_SCHEMA)

    messages.append({"role": "assistant", "content": message.content})
    messages.append({
        "role":
        "user",
        "content":
        "Give me another one with a different name and age"
    })
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=500,
        extra_body=dict(guided_json=TEST_SCHEMA))
    message = chat_completion.choices[0].message
    assert message.content is not None
    json2 = json.loads(message.content)
    jsonschema.validate(instance=json2, schema=TEST_SCHEMA)
    assert json1["name"] != json2["name"]
    assert json1["age"] != json2["age"]


async def test_guided_regex_completion(server, client: openai.AsyncOpenAI):
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=f"Give an example IPv4 address with this regex: {TEST_REGEX}",
        n=3,
        temperature=1.0,
        max_tokens=20,
        extra_body=dict(guided_regex=TEST_REGEX))

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 3
    for i in range(3):
        assert completion.choices[i].text is not None
        assert re.fullmatch(TEST_REGEX, completion.choices[i].text) is not None


async def test_guided_regex_chat(server, client: openai.AsyncOpenAI):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role":
        "user",
        "content":
        f"Give an example IP address with this regex: {TEST_REGEX}"
    }]
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=20,
        extra_body=dict(guided_regex=TEST_REGEX))
    ip1 = chat_completion.choices[0].message.content
    assert ip1 is not None
    assert re.fullmatch(TEST_REGEX, ip1) is not None

    messages.append({"role": "assistant", "content": ip1})
    messages.append({"role": "user", "content": "Give me a different one"})
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=20,
        extra_body=dict(guided_regex=TEST_REGEX))
    ip2 = chat_completion.choices[0].message.content
    assert ip2 is not None
    assert re.fullmatch(TEST_REGEX, ip2) is not None
    assert ip1 != ip2


async def test_guided_choice_completion(server, client: openai.AsyncOpenAI):
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt="The best language for type-safe systems programming is ",
        n=2,
        temperature=1.0,
        max_tokens=10,
        extra_body=dict(guided_choice=TEST_CHOICE))

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 2
    for i in range(2):
        assert completion.choices[i].text in TEST_CHOICE


async def test_guided_choice_chat(server, client: openai.AsyncOpenAI):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role":
        "user",
        "content":
        "The best language for type-safe systems programming is "
    }]
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
        extra_body=dict(guided_choice=TEST_CHOICE))
    choice1 = chat_completion.choices[0].message.content
    assert choice1 in TEST_CHOICE

    messages.append({"role": "assistant", "content": choice1})
    messages.append({
        "role": "user",
        "content": "I disagree, pick another one"
    })
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
        extra_body=dict(guided_choice=TEST_CHOICE))
    choice2 = chat_completion.choices[0].message.content
    assert choice2 in TEST_CHOICE
    assert choice1 != choice2


async def test_guided_decoding_type_error(server, client: openai.AsyncOpenAI):
    with pytest.raises(openai.BadRequestError):
        _ = await client.completions.create(
            model=MODEL_NAME,
            prompt="Give an example JSON that fits this schema: 42",
            extra_body=dict(guided_json=42))

    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role":
        "user",
        "content":
        "The best language for type-safe systems programming is "
    }]
    with pytest.raises(openai.BadRequestError):
        _ = await client.chat.completions.create(model=MODEL_NAME,
                                                 messages=messages,
                                                 extra_body=dict(guided_regex={
                                                     1: "Python",
                                                     2: "C++"
                                                 }))

    with pytest.raises(openai.BadRequestError):
        _ = await client.completions.create(
            model=MODEL_NAME,
            prompt="Give an example string that fits this regex",
            extra_body=dict(guided_regex=TEST_REGEX, guided_json=TEST_SCHEMA))


598
599
if __name__ == "__main__":
    pytest.main([__file__])