utils.py 5.75 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
from typing import List, Optional, Dict

from vllm.worker.worker import Worker
from vllm.utils import get_distributed_init_method, get_ip, get_open_port
from vllm.engine.arg_utils import EngineArgs
from vllm.sequence import SequenceGroupMetadata, SequenceData
from vllm.sampling_params import SamplingParams
from vllm.worker.cache_engine import CacheEngine
from vllm.model_executor.utils import set_random_seed
from dataclasses import dataclass, fields


@dataclass
class ExecuteModelData:
    """Helper data structure which facilitates cleaner tests.
    """
    seq_group_metadata_list: List[SequenceGroupMetadata]
    blocks_to_swap_in: Dict[int, int]
    blocks_to_swap_out: Dict[int, int]
    blocks_to_copy: Dict[int, List[int]]

    def to_dict(self):
        return dict(
            (field.name, getattr(self, field.name)) for field in fields(self))


def round_up_to_next_block(seq_len: int, block_size: int) -> int:
    return (seq_len + block_size - 1) // block_size


def create_execute_model_data(
    seq_group_metadata_list: List[SequenceGroupMetadata],
    blocks_to_swap_in: Optional[Dict[int, int]] = None,
    blocks_to_swap_out: Optional[Dict[int, int]] = None,
    blocks_to_copy: Optional[Dict[int, int]] = None,
) -> ExecuteModelData:
    if blocks_to_swap_in is None:
        blocks_to_swap_in = {}
    if blocks_to_swap_out is None:
        blocks_to_swap_out = {}
    if blocks_to_copy is None:
        blocks_to_copy = {}

    return ExecuteModelData(
        seq_group_metadata_list=seq_group_metadata_list,
        blocks_to_swap_in=blocks_to_swap_in,
        blocks_to_swap_out=blocks_to_swap_out,
        blocks_to_copy=blocks_to_copy,
    )


def patch_execute_model_with_seeds(worker: Worker, rand_seeds: List[int]):
    seed_iter = iter(rand_seeds)
    original_execute_model = worker.execute_model

    def new_execute_model(*args, **kwargs):
        result = original_execute_model(*args, **kwargs)
        set_random_seed(next(seed_iter))
        return result

    return new_execute_model


def zero_kv_cache(cache_engine: CacheEngine):
    assert cache_engine.gpu_cache
    for key_blocks, value_blocks in cache_engine.gpu_cache:
        key_blocks.zero_()
        value_blocks.zero_()


def create_worker(cls: type,
                  model_name: str,
                  block_size: int,
                  num_gpu_blocks: int,
                  seed: int,
                  is_driver_worker: bool = True,
                  enforce_eager: bool = True):
    engine_args = EngineArgs(
        model=model_name,
        seed=seed,
        block_size=block_size,
        enforce_eager=enforce_eager,
    )

86
87
    (model_config, cache_config, parallel_config, scheduler_config,
     _) = engine_args.create_engine_configs()
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

    distributed_init_method = get_distributed_init_method(
        get_ip(), get_open_port())

    worker = cls(
        model_config=model_config,
        parallel_config=parallel_config,
        scheduler_config=scheduler_config,
        local_rank=0,
        rank=0,
        distributed_init_method=distributed_init_method,
        is_driver_worker=is_driver_worker,
    )

    worker.init_model()
    worker.load_model()

    cache_config.num_gpu_blocks = num_gpu_blocks
    cache_config.num_cpu_blocks = 0
    worker.init_cache_engine(cache_config)
    worker.warm_up_model()

    return worker


def create_seq_group_metadata_from_prompts(
    prompts: List[List[int]],
    num_gpu_blocks: int,
    block_size: int,
    final_seq_lens: List[int],
    continuations: Optional[List[List[int]]] = None,
    num_tokens_processed: Optional[List[int]] = None,
    seq_ids: Optional[List[int]] = None,
) -> List[SequenceGroupMetadata]:

    if continuations is None:
        continuations = [[] for _ in prompts]

    if num_tokens_processed is None:
        # Default to 1 token missing from kv cache for generation sequences.
        num_tokens_processed = []
        for continuation, prompt in zip(continuations, prompts):
            # If prefill, then default to zero tokens processed.
            if not continuation:
                num_tokens_processed.append(0)
            else:
                # If generation, then default to all but one tokens processed.
                num_tokens_processed.append(
                    len(continuation) + len(prompt) - 1)

    if seq_ids is None:
        seq_ids = list(i for i, _ in enumerate(prompts))

    free_gpu_blocks = list(range(num_gpu_blocks))

    block_allocations = {
        i: [
            free_gpu_blocks.pop()
            for _ in range(round_up_to_next_block(final_len, block_size))
        ]
        for i, final_len in enumerate(final_seq_lens)
    }

    return [
        SequenceGroupMetadata(
            request_id=str(i),
            is_prompt=len(cont_token_ids) == 0,
            seq_data={
                i:
                SequenceData(prompt_token_ids=prompt_token_ids[:] +
                             cont_token_ids[:])
            },
            sampling_params=SamplingParams(temperature=0.0, ),
            block_tables={i: block_allocations[i][:]},
        ) for i, (prompt_token_ids, cont_token_ids, num_tokens_saved) in
        enumerate(zip(prompts, continuations, num_tokens_processed))
    ]


def assert_logprobs_dict_allclose(
        actual_logprobs: List[Dict[int, float]],
        expected_logprobs: List[Dict[int, float]]) -> None:
    for single_step_actual_logprobs, single_step_expected_logprobs in zip(
            actual_logprobs, expected_logprobs):
        assert set(single_step_actual_logprobs.keys()) == set(
            single_step_expected_logprobs.keys())
        for token_id in single_step_actual_logprobs:
            actual = torch.tensor(single_step_actual_logprobs[token_id])
            expected = torch.tensor(single_step_expected_logprobs[token_id])
            assert torch.allclose(actual, expected)