test_rejection_sampler.py 15.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
"""Tests for rejection sampling."""
import pytest
from typing import List, Tuple

import torch
import torch.nn.functional as F

from vllm.model_executor.utils import set_random_seed

from vllm.model_executor.layers.rejection_sampler import RejectionSampler


def mock_causal_accepted_tensor(
        k: int, last_accepted_indices: torch.Tensor) -> torch.Tensor:
    """Generate an "accepted" tensor which should yield causally-accepted tokens
    up to last accepted indices.

    Tokens after last_accepted_indices+1 may also be accepted, although they
    will not be causally accepted.
    """
    batch_size = last_accepted_indices.shape[0]

    accepted = (torch.arange(k).expand(batch_size, k) <=
                last_accepted_indices.unsqueeze(-1).broadcast_to(
                    batch_size, k)).to(device="cuda")

    # Sprinkle accepted values after the contiguous initial accepted values.
    # This replicates the behavior of rejection sampling, which may "accept"
    # a token that cannot be accepted because of causality.
    sprinkle_candidates = (
        torch.arange(k).expand(batch_size, k) >
        last_accepted_indices.unsqueeze(-1).broadcast_to(batch_size, k) + 1)
    sprinkle = torch.rand(batch_size, k, device="cuda") > 0.5
    accepted[sprinkle_candidates] = sprinkle[sprinkle_candidates]
    return accepted


@pytest.mark.parametrize("seed", list(range(10)))
@pytest.mark.parametrize(
    "which_tokens_accepted",
    ["all_tokens_accepted", "no_tokens_accepted", "some_tokens_accepted"])
@torch.inference_mode()
def test_correct_output_format(which_tokens_accepted: str, seed: int):
    """Verify the output has correct format given predetermined accepted matrix.
    """
    set_random_seed(seed)

    batch_size = 10
    k = 5
    vocab_size = 3000

    if which_tokens_accepted == "all_tokens_accepted":
        accepted = mock_causal_accepted_tensor(
            k, -1 + k * torch.ones((batch_size, ), dtype=torch.long))
    elif which_tokens_accepted == "no_tokens_accepted":
        accepted = mock_causal_accepted_tensor(
            k, -torch.ones((batch_size, ), dtype=torch.long))
    elif which_tokens_accepted == "some_tokens_accepted":
        last_accepted_indices = torch.randint(low=-1,
                                              high=k,
                                              size=(batch_size, ))
        accepted = mock_causal_accepted_tensor(k, last_accepted_indices)
    else:
        raise AssertionError()

    recovered_token_ids = torch.randint(low=0,
                                        high=vocab_size,
                                        size=(batch_size, k),
                                        dtype=torch.int64,
                                        device="cuda")
    draft_token_ids = torch.randint(low=0,
                                    high=vocab_size,
                                    size=(batch_size, k),
                                    dtype=torch.int64,
                                    device="cuda")
    bonus_token_ids = torch.randint(low=0,
                                    high=vocab_size,
                                    size=(batch_size, 1),
                                    dtype=torch.int64,
                                    device="cuda")

    rejection_sampler = RejectionSampler()
    rejection_sampler.init_gpu_tensors(rank=0)
    output_token_ids = rejection_sampler._create_output(  # pylint: disable=protected-access
        accepted,
        recovered_token_ids,
        draft_token_ids,
        bonus_token_ids,
    )

    if which_tokens_accepted == "all_tokens_accepted":
        # Expect all tokens to be equal to draft tokens.
        assert torch.equal(output_token_ids[:, :-1], draft_token_ids)

        # Expect all bonus tokens to be included.
        assert torch.equal(output_token_ids[:, -1:], bonus_token_ids)
    elif which_tokens_accepted == "no_tokens_accepted":
        # Expect first token to be equal to recovered tokens.
        assert torch.equal(output_token_ids[:, 0], recovered_token_ids[:, 0])

        # Expect everything else to be -1.
        assert torch.equal(output_token_ids[:, 1:],
                           torch.ones_like(output_token_ids[:, 1:]) * -1)
    elif which_tokens_accepted == "some_tokens_accepted":
        recovered_plus_bonus = torch.cat(
            (recovered_token_ids, bonus_token_ids), dim=-1)
        # Assert first rejected token is a recovered token or bonus token.
        assert torch.equal(
            recovered_plus_bonus[torch.arange(0, batch_size),
                                 last_accepted_indices + 1],
            output_token_ids[torch.arange(0, batch_size),
                             last_accepted_indices + 1])

        # Assert every subsequent token is -1.
        subsequent_mask = torch.arange(0, k + 1).expand(
            batch_size, k + 1) >= (last_accepted_indices + 2).unsqueeze(-1)
        assert torch.all(output_token_ids[subsequent_mask] == -1)


@pytest.mark.parametrize("k", list(range(1, 6)))
@pytest.mark.parametrize("vocab_size", [30_000, 50_000])
@pytest.mark.parametrize("batch_size", list(range(1, 32)))
@torch.inference_mode()
def test_no_crash_with_varying_dims(k: int, vocab_size: int, batch_size: int):
    rejection_sampler = RejectionSampler()
    rejection_sampler.init_gpu_tensors(rank=0)

    draft_probs = torch.rand(batch_size,
                             k,
                             vocab_size,
                             dtype=torch.float32,
                             device="cuda")
    target_probs = torch.rand(batch_size,
                              k,
                              vocab_size,
                              dtype=torch.float32,
                              device="cuda")
    bonus_token_ids = torch.randint(low=0,
                                    high=vocab_size,
                                    size=(batch_size, 1),
                                    dtype=torch.int64,
                                    device="cuda")
    draft_token_ids = torch.randint(low=0,
                                    high=vocab_size,
                                    size=(batch_size, k),
                                    dtype=torch.int64,
                                    device="cuda")

    rejection_sampler(target_probs, bonus_token_ids, draft_probs,
                      draft_token_ids)


@pytest.mark.parametrize("above_or_below_vocab_range", ["above", "below"])
@pytest.mark.parametrize("which_token_ids",
                         ["bonus_token_ids", "draft_token_ids"])
@torch.inference_mode()
def test_raises_when_vocab_oob(above_or_below_vocab_range: str,
                               which_token_ids: str):
    k = 3
    batch_size = 5
    vocab_size = 30_000

    rejection_sampler = RejectionSampler(strict_mode=True)
    rejection_sampler.init_gpu_tensors(rank=0)

    draft_probs = torch.rand(batch_size,
                             k,
                             vocab_size,
                             dtype=torch.float32,
                             device="cuda")
    target_probs = torch.rand(batch_size,
                              k,
                              vocab_size,
                              dtype=torch.float32,
                              device="cuda")
    bonus_token_ids = torch.randint(low=0,
                                    high=vocab_size,
                                    size=(batch_size, 1),
                                    dtype=torch.int64,
                                    device="cuda")
    draft_token_ids = torch.randint(low=0,
                                    high=vocab_size,
                                    size=(batch_size, k),
                                    dtype=torch.int64,
                                    device="cuda")

    oob_token_ids = None
    if which_token_ids == "bonus_token_ids":
        oob_token_ids = bonus_token_ids
    elif which_token_ids == "draft_token_ids":
        oob_token_ids = draft_token_ids
    else:
        raise AssertionError()

    if above_or_below_vocab_range == "above":
        rogue_token_id = vocab_size + 1
    elif above_or_below_vocab_range == "below":
        rogue_token_id = -1
    else:
        raise AssertionError()

    oob_token_ids[0][0] = rogue_token_id

    with pytest.raises(AssertionError):
        rejection_sampler(target_probs, bonus_token_ids, draft_probs,
                          draft_token_ids)


@pytest.mark.parametrize("draft_and_target_probs_equal", [True, False])
@pytest.mark.parametrize("seed", list(range(5)))
@torch.inference_mode()
def test_rejection_sampling_approximates_target_distribution(
        seed: int, draft_and_target_probs_equal: bool):
    """Verify rejection sampling approximates target distribution,
    despite sampling from a potentially distinct draft distribution.

    This is done by first creating a random target probability
    distribution and a random draft probability distribution. We then
    sample token ids from the rejection sampler using these draft
    and target distributions. The samples are used to estimate
    the output probability distribution, which we expect to approximate
    the target distribution.

    A basic distance metric is used to determine similarity between
    distributions.

    We expect that as we increase the number of samples,
    the distance between the observed distribution and the target
    distribution decreases. To measure this, we compare the distance
    of the observed distribution against both the target distribution
    and a uniform random distribution. We expect the distance between
    the observed distribution and the target distribution to improve
    much more than the distance improvement between the observed
    distribution and the random distribution.

    When draft_and_target_probs_equal=True, the draft and target
    probabilities are exactly equal. Rejection sampling should
    still work without any NaNs or exceptions.
    """
    set_random_seed(seed)

    helper = _CorrectnessTestHelper(
        vocab_size=10,
        rejection_sampler=RejectionSampler(),
    )

    draft_probs, target_probs, reference_probs = helper.generate_probs_for_test(
        draft_and_target_probs_equal)

    sample_sizes = [10, 100, 1_000, 10_000, 100_000]
    distance_wrt_reference = []
    distance_wrt_target = []

    for num_samples in sample_sizes:
        (reference_vs_rejsample_dist,
         target_vs_rejsample_dist) = helper.run_and_compare_distributions(
             draft_probs,
             target_probs,
             reference_probs,
             num_samples,
         )

        distance_wrt_reference.append(reference_vs_rejsample_dist)
        distance_wrt_target.append(target_vs_rejsample_dist)

        relative_change_in_distance_wrt_target = get_ratio_first_to_last(
            distance_wrt_target)
        relative_change_in_distance_wrt_reference = get_ratio_first_to_last(
            distance_wrt_reference)

        print(f"{num_samples=} {target_vs_rejsample_dist=:.05f} "
              f"{reference_vs_rejsample_dist=:.05f}")
        print(f"{num_samples=} {relative_change_in_distance_wrt_target=:.02f} "
              f"{relative_change_in_distance_wrt_reference=:.02f}")

    relative_change_in_distance_wrt_target = get_ratio_first_to_last(
        distance_wrt_target)
    relative_change_in_distance_wrt_reference = get_ratio_first_to_last(
        distance_wrt_reference)

    expected_improvement_multiplier = 20
    assert (relative_change_in_distance_wrt_target >
            relative_change_in_distance_wrt_reference *
            expected_improvement_multiplier)


def get_ratio_first_to_last(elements: List[float]) -> float:
    return elements[0] / elements[-1]


class _CorrectnessTestHelper:
    """Class that packages together logic required for the unit-level
    rejection sampling correctness test.
    """

    def __init__(self, vocab_size: int, rejection_sampler: RejectionSampler):
        self.rejection_sampler = rejection_sampler
        self.vocab_size = vocab_size
        self.vocab_range = (0, vocab_size)

        self.rejection_sampler.init_gpu_tensors(rank=0)

        # Keep test simple, use k=1
        self.k = 1

        # Bonus tokens not used, but rejection sampler requires
        # correct shape.
        self.num_bonus_tokens = 1

    def generate_probs_for_test(
        self, draft_and_target_probs_equal: bool
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        draft_probs, target_probs = [
            F.softmax(
                torch.rand(self.vocab_size, dtype=torch.float32),
                dim=-1,
            ) for _ in range(2)
        ]

        num_reference_probs = 100
        reference_probs = F.softmax(
            torch.rand(num_reference_probs,
                       self.vocab_size,
                       dtype=torch.float32),
            dim=-1,
        )

        if draft_and_target_probs_equal:
            target_probs = draft_probs.clone()

        return draft_probs, target_probs, reference_probs

    def run_and_compare_distributions(self, draft_probs: torch.Tensor,
                                      target_probs: torch.Tensor,
                                      reference_probs: torch.Tensor,
                                      num_samples: int) -> Tuple[float, float]:
        # Sample using rejection sampling.
        rej_sample_probs = self._estimate_rejection_sampling_pdf(
            draft_probs, target_probs, num_samples)

        # Average distance from reference probs.
        reference_vs_rejsample_dist = torch.dist(
            reference_probs,
            rej_sample_probs).item() / reference_probs.shape[0]
        target_vs_rejsample_dist = torch.dist(target_probs,
                                              rej_sample_probs).item()

        return reference_vs_rejsample_dist, target_vs_rejsample_dist

    def _estimate_rejection_sampling_pdf(
        self,
        draft_probs: torch.Tensor,
        target_probs: torch.Tensor,
        num_samples: int,
    ) -> torch.Tensor:
        # Repeat draft probs num_samples times.
        draft_probs = draft_probs.reshape(1, self.k, self.vocab_size).repeat(
            num_samples, 1, 1)

        # Repeat target probs num_samples * k times.
        # Rejection sampler requires bonus token probs, but they aren't used.
        target_probs = target_probs.reshape(1, 1, self.vocab_size).repeat(
            num_samples, self.k, 1)

        # Randomly sample draft token ids from draft probs.
        draft_token_ids = torch.multinomial(draft_probs[:, 0, :],
                                            num_samples=1,
                                            replacement=True).reshape(
                                                num_samples, self.k)

        # Bonus tokens not used but required.
        bonus_token_ids = torch.zeros((1, self.num_bonus_tokens),
                                      dtype=torch.int64,
                                      device="cuda").repeat(num_samples, 1)

        # Get output tokens via rejection sampling.
        output_token_ids = self.rejection_sampler(target_probs.to("cuda"),
                                                  bonus_token_ids.to("cuda"),
                                                  draft_probs.to("cuda"),
                                                  draft_token_ids.to("cuda"))

        # Remove bonus tokens
        output_token_ids = output_token_ids[:, :-1].flatten()

        # Estimate probability density function
        hist = torch.histogram(output_token_ids.to(dtype=torch.float,
                                                   device="cpu"),
                               bins=self.vocab_size,
                               range=self.vocab_range,
                               density=True)

        return hist.hist