test_lora_manager.py 18.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import os
from typing import List

import pytest
import torch
from safetensors.torch import load_file
from torch import nn

from vllm.config import LoRAConfig
from vllm.lora.layers import (ColumnParallelLinearWithLoRA,
                              RowParallelLinearWithLoRA,
                              MergedColumnParallelLinearWithLoRA)
from vllm.lora.lora import LoRALayerWeights, PackedLoRALayerWeights
from vllm.lora.models import (EMBEDDING_MODULES, LoRAModel, LoRAModelManager,
                              LRUCacheLoRAModelManager, LoRAMapping)
from vllm.lora.request import LoRARequest
from vllm.lora.worker_manager import (LRUCacheWorkerLoRAManager,
                                      WorkerLoRAManager)
from vllm.model_executor.layers.linear import RowParallelLinear


def test_from_lora_tensors(sql_lora_files):
    tensors = load_file(
        os.path.join(sql_lora_files, "adapter_model.safetensors"))
    new_embeddings = load_file(
        os.path.join(sql_lora_files, "new_embeddings.safetensors"))
    lora_model = LoRAModel.from_lora_tensors(1,
                                             8,
                                             16,
                                             tensors,
                                             "cuda",
                                             embeddings=new_embeddings)
    for module_name, lora in lora_model.loras.items():
        assert lora.module_name == module_name
        assert lora.rank == 8
        assert lora.lora_alpha == 16
        assert lora.lora_a is not None
        assert lora.lora_b is not None
        assert (lora.lora_a.shape[1] == lora.lora_b.shape[0]
                ), f"{lora.lora_a.shape=}, {lora.lora_b.shape=}"
        assert lora.lora_a.shape[1] == 8
        embeddings_module = next(
            (k for k in EMBEDDING_MODULES if k in module_name), None)
        if embeddings_module:
            assert torch.equal(
                lora.embeddings_tensor,
                new_embeddings[EMBEDDING_MODULES[embeddings_module]].to(
                    device=lora.embeddings_tensor.device))
        else:
            assert lora.embeddings_tensor is None


def create_lora(lora_id: int, model: nn.Module,
                sub_modules: List[str]) -> LoRAModel:
    loras = {}
    for name in sub_modules:
        w = model.get_submodule(name).weight
        loras[name] = LoRALayerWeights(
            name,
            8,
            16,
            torch.rand([w.shape[1], 8], device="cuda"),
            torch.rand([8, w.shape[0]], device="cuda"),
        )
    return LoRAModel(lora_id, 8, loras)


def create_packed_lora(
    lora_id: int,
    model: nn.Module,
    module_name,
    replaced_module_names,
    empty_replaced_module_name=None,
) -> LoRAModel:
    w = model.get_submodule(module_name).weight
    loras = {}
    for replaced_module_name in replaced_module_names:
        if replaced_module_name == empty_replaced_module_name:
            continue
        loras[replaced_module_name] = LoRALayerWeights(
            replaced_module_name,
            8,
            16,
            torch.rand([w.shape[1], 8], device="cuda"),
            torch.rand([8, w.shape[0] // len(replaced_module_names)],
                       device="cuda"),
        )
    return LoRAModel(lora_id, 8, loras)


def test_replace_submodules(dist_init, dummy_model):
    model = dummy_model
    manager = LoRAModelManager(model,
                               1,
                               1,
                               1,
                               LoRAConfig(max_lora_rank=8,
                                          max_cpu_loras=8,
                                          max_loras=8),
                               lora_target_modules=["dense1", "layer1.dense2"])
    model = manager.model

    assert isinstance(model.get_submodule("dense1"),
                      ColumnParallelLinearWithLoRA)
    assert isinstance(model.get_submodule("layer1.dense1"),
                      ColumnParallelLinearWithLoRA)
    assert isinstance(model.get_submodule("dense2"), RowParallelLinear)
    assert isinstance(model.get_submodule("layer1.dense2"),
                      RowParallelLinearWithLoRA)


def test_lora_model_manager(dist_init, dummy_model):
    model = dummy_model
    model_lora1 = create_lora(1, model, ["layer1.dense1", "dense2", "lm_head"])
    model_lora2 = create_lora(2, model, ["dense1", "dense2", "lm_head"])
    model_lora3 = create_lora(3, model, ["dense1", "dense2", "lm_head"])
    manager = LoRAModelManager(
        model,
        2,
        2,
        2,
        LoRAConfig(max_lora_rank=8, max_cpu_loras=3, max_loras=2),
        lora_target_modules=["dense1", "dense2", "lm_head"])
    assert all(x is None for x in manager.lora_index_to_id)
    assert manager.add_lora(model_lora1)
    assert manager.activate_lora(1)
    assert manager.lora_index_to_id[0] == 1
    assert not manager.add_lora(model_lora1)
    assert not manager.activate_lora(1)
    assert manager.add_lora(model_lora2)
    assert manager.activate_lora(2)
    assert manager.lora_index_to_id[0] == 1
    assert manager.lora_index_to_id[1] == 2
    assert not manager.add_lora(model_lora2)
    assert not manager.activate_lora(2)
    assert manager.add_lora(model_lora3)
    assert manager.lora_index_to_id[0] == 1
    assert manager.lora_index_to_id[1] == 2
    with pytest.raises(ValueError):
        assert manager.activate_lora(3)
    assert manager.lora_index_to_id[0] == 1
    assert manager.lora_index_to_id[1] == 2
    assert manager.remove_lora(model_lora2.id)
    assert manager.lora_index_to_id[1] is None
    assert not manager.remove_lora(model_lora2.id)
    assert manager.remove_lora(model_lora1.id)
    assert not manager.remove_lora(model_lora1.id)
    assert manager.add_lora(model_lora1)
    assert manager.lora_index_to_id[0] is None
    assert manager.lora_index_to_id[1] is None
    assert manager.add_lora(model_lora2)
    assert manager.activate_lora(3)
    assert manager.lora_index_to_id[0] == 3
    assert manager.lora_index_to_id[1] is None
    assert manager.activate_lora(2)
    assert manager.lora_index_to_id[0] == 3
    assert manager.lora_index_to_id[1] == 2


def test_lora_lru_cache_model_manager(dist_init, dummy_model):
    model = dummy_model
    model_lora1 = create_lora(1, model, ["layer1.dense1", "dense2", "lm_head"])
    model_lora2 = create_lora(2, model, ["dense1", "dense2", "lm_head"])
    model_lora3 = create_lora(3, model, ["dense1", "dense2", "lm_head"])
    manager = LRUCacheLoRAModelManager(
        model,
        2,
        2,
        2,
        LoRAConfig(max_lora_rank=8, max_cpu_loras=3, max_loras=2),
        lora_target_modules=["dense1", "dense2", "lm_head"])
    assert all(x is None for x in manager.lora_index_to_id)
    assert manager.add_lora(model_lora1)
    assert manager.activate_lora(1)
    assert manager.lora_index_to_id[0] == 1
    assert not manager.add_lora(model_lora1)
    assert not manager.activate_lora(1)
    assert manager.add_lora(model_lora2)
    assert manager.activate_lora(2)
    assert manager.lora_index_to_id[0] == 1
    assert manager.lora_index_to_id[1] == 2
    assert not manager.add_lora(model_lora2)
    assert not manager.activate_lora(2)
    assert manager.add_lora(model_lora3)
    assert manager.lora_index_to_id[0] == 1
    assert manager.lora_index_to_id[1] == 2
    assert manager.activate_lora(3)
    assert manager.lora_index_to_id[0] == 3
    assert manager.lora_index_to_id[1] == 2
    assert manager.remove_lora(model_lora2.id)
    assert manager.lora_index_to_id[1] is None
    assert not manager.remove_lora(model_lora2.id)
    assert manager.remove_lora(model_lora1.id)
    assert not manager.remove_lora(model_lora1.id)
    assert manager.add_lora(model_lora1)
    assert manager.activate_lora(1)
    assert manager.lora_index_to_id[0] == 3
    assert manager.lora_index_to_id[1] == 1
    assert manager.add_lora(model_lora2)
    assert manager.deactivate_lora(3)
    assert manager.lora_index_to_id[0] is None
    assert manager.lora_index_to_id[1] == 1
    assert manager.activate_lora(2)
    assert manager.lora_index_to_id[0] == 2
    assert manager.lora_index_to_id[1] == 1
    assert manager.activate_lora(3)
    assert manager.lora_index_to_id[0] == 2
    assert manager.lora_index_to_id[1] == 3


def test_lru_lora_model_manager(dist_init, dummy_model):
    # This tests just the LRU cache functionality, everything else is
    # tested in test_lora_model_manager
    model = dummy_model
    model_lora1 = create_lora(1, model, ["layer1.dense1", "dense2", "lm_head"])
    model_lora2 = create_lora(2, model, ["dense1", "dense2", "lm_head"])
    model_lora3 = create_lora(3, model, ["dense1", "dense2", "lm_head"])
    model_lora4 = create_lora(4, model, ["dense1", "dense2", "lm_head"])
    manager = LRUCacheLoRAModelManager(
        model, 2, 2, 2,
        LoRAConfig(max_lora_rank=8, max_cpu_loras=2, max_loras=2),
        ["dense1", "dense2", "lm_head"])

    assert all(x is None for x in manager.lora_index_to_id)

    # Add up to capacity
    assert manager.add_lora(model_lora1)
    assert manager.add_lora(model_lora2)
    assert manager.activate_lora(1)
    assert manager.activate_lora(2)

    assert set(manager.list_loras()) == {1, 2}
    assert manager.lora_index_to_id[0] == 1
    assert manager.lora_index_to_id[1] == 2

    # Add over capacity
    assert manager.add_lora(model_lora3)
    assert manager.add_lora(model_lora4)
    assert manager.activate_lora(3)
    assert manager.activate_lora(4)

    assert set(manager.list_loras()) == {3, 4}
    assert manager.lora_index_to_id[0] == 3
    assert manager.lora_index_to_id[1] == 4

    # Add 3 again to move it to the top and then add 2
    # should return false since it's in already
    assert not manager.add_lora(model_lora3)
    assert not manager.activate_lora(3)
    assert manager.add_lora(model_lora2)
    assert manager.activate_lora(2)

    assert set(manager.list_loras()) == {3, 2}
    assert manager.lora_index_to_id[0] == 3
    assert manager.lora_index_to_id[1] == 2

    # Remove manually
    assert manager.remove_lora(3)
    assert not manager.remove_lora(3)

    assert set(manager.list_loras()) == {2}
    assert manager.lora_index_to_id[0] is None
    assert manager.lora_index_to_id[1] == 2

    assert manager.add_lora(model_lora3)
    assert manager.activate_lora(3)
    assert manager.add_lora(model_lora4)
    assert manager.activate_lora(4)

    assert set(manager.list_loras()) == {3, 4}
    assert manager.lora_index_to_id[0] == 3
    assert manager.lora_index_to_id[1] == 4

    assert manager.remove_oldest_lora()
    assert set(manager.list_loras()) == {4}
    assert manager.lora_index_to_id[0] is None
    assert manager.lora_index_to_id[1] == 4

    assert manager.remove_oldest_lora()
    assert set(manager.list_loras()) == set()
    assert all(x is None for x in manager.lora_index_to_id)

    assert not manager.remove_oldest_lora()
    assert set(manager.list_loras()) == set()
    assert all(x is None for x in manager.lora_index_to_id)


def test_lru_cache_worker_lora_manager(llama_2_7b_model_extra_embeddings,
                                       sql_lora_files):
    lora_config = LoRAConfig(max_lora_rank=8, max_cpu_loras=4, max_loras=4)
    worker_lora_manager = LRUCacheWorkerLoRAManager(
        4, 2, llama_2_7b_model_extra_embeddings.config.vocab_size, lora_config,
        torch.device("cuda"))
    worker_lora_manager.create_lora_manager(llama_2_7b_model_extra_embeddings)

    mapping = LoRAMapping([], [])
    worker_lora_manager.set_active_loras([
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("2", 2, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {1, 2}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 1
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] == 2

    worker_lora_manager.set_active_loras([
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("3", 3, sql_lora_files),
        LoRARequest("4", 4, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {1, 2, 3, 4}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 1
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] == 2
    assert worker_lora_manager._lora_manager.lora_index_to_id[2] == 3
    assert worker_lora_manager._lora_manager.lora_index_to_id[3] == 4

    worker_lora_manager.set_active_loras([
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("2", 2, sql_lora_files),
        LoRARequest("5", 5, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {1, 2, 4, 5}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 1
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] == 2
    assert worker_lora_manager._lora_manager.lora_index_to_id[2] == 5
    assert worker_lora_manager._lora_manager.lora_index_to_id[3] == 4

    worker_lora_manager.set_active_loras([
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("1", 1, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {1, 2, 4, 5}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 1
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] == 2
    assert worker_lora_manager._lora_manager.lora_index_to_id[2] == 5
    assert worker_lora_manager._lora_manager.lora_index_to_id[3] == 4

    worker_lora_manager.set_active_loras([
        LoRARequest("6", 6, sql_lora_files),
        LoRARequest("7", 7, sql_lora_files),
        LoRARequest("8", 8, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {1, 6, 7, 8}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 1
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] == 7
    assert worker_lora_manager._lora_manager.lora_index_to_id[2] == 8
    assert worker_lora_manager._lora_manager.lora_index_to_id[3] == 6

    # Over capacity
    with pytest.raises(RuntimeError):
        worker_lora_manager.set_active_loras([
            LoRARequest("10", 10, sql_lora_files),
            LoRARequest("11", 11, sql_lora_files),
            LoRARequest("12", 12, sql_lora_files),
            LoRARequest("13", 13, sql_lora_files),
            LoRARequest("14", 14, sql_lora_files)
        ], mapping)


def test_worker_lora_manager(llama_2_7b_model_extra_embeddings,
                             sql_lora_files):
    # Should remove every LoRA not specified in the request.
    lora_config = LoRAConfig(max_lora_rank=8, max_cpu_loras=4, max_loras=4)
    worker_lora_manager = WorkerLoRAManager(
        4, 2, llama_2_7b_model_extra_embeddings.config.vocab_size, lora_config,
        torch.device("cuda"))
    worker_lora_manager.create_lora_manager(llama_2_7b_model_extra_embeddings)

    mapping = LoRAMapping([], [])
    worker_lora_manager.set_active_loras([
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("2", 2, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {1, 2}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 1
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] == 2

    worker_lora_manager.set_active_loras([
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("3", 3, sql_lora_files),
        LoRARequest("4", 4, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {1, 3, 4}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 1
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] == 3
    assert worker_lora_manager._lora_manager.lora_index_to_id[2] == 4

    worker_lora_manager.set_active_loras([
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("2", 2, sql_lora_files),
        LoRARequest("5", 5, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {1, 2, 5}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 1
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] == 2
    assert worker_lora_manager._lora_manager.lora_index_to_id[2] == 5

    worker_lora_manager.set_active_loras([
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("1", 1, sql_lora_files),
        LoRARequest("1", 1, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {1}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 1
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] is None
    assert worker_lora_manager._lora_manager.lora_index_to_id[2] is None

    worker_lora_manager.set_active_loras([
        LoRARequest("6", 6, sql_lora_files),
        LoRARequest("7", 7, sql_lora_files),
        LoRARequest("8", 8, sql_lora_files)
    ], mapping)
    assert worker_lora_manager.list_loras() == {6, 7, 8}
    assert worker_lora_manager._lora_manager.lora_index_to_id[0] == 8
    assert worker_lora_manager._lora_manager.lora_index_to_id[1] == 6
    assert worker_lora_manager._lora_manager.lora_index_to_id[2] == 7

    # Over capacity
    with pytest.raises(RuntimeError):
        worker_lora_manager.set_active_loras([
            LoRARequest("10", 10, sql_lora_files),
            LoRARequest("11", 11, sql_lora_files),
            LoRARequest("12", 12, sql_lora_files),
            LoRARequest("13", 13, sql_lora_files),
            LoRARequest("14", 14, sql_lora_files)
        ], mapping)


def test_packed_loras(dist_init, dummy_model_gate_up):
    model = dummy_model_gate_up
    model_lora = create_packed_lora(
        1,
        model,
        module_name="gate_up_proj",
        replaced_module_names=["gate_proj", "up_proj"])
    model_lora1 = create_packed_lora(
        2,
        model,
        module_name="gate_up_proj",
        replaced_module_names=["gate_proj", "up_proj"],
        empty_replaced_module_name="gate_proj",
    )

    manager = LoRAModelManager(
        model, 2, 2, 2,
        LoRAConfig(max_lora_rank=8, max_cpu_loras=2, max_loras=2),
        ["gate_up_proj"])
    model = manager.model

    assert isinstance(model.get_submodule("gate_up_proj"),
                      MergedColumnParallelLinearWithLoRA)
    assert manager.add_lora(model_lora)
    assert manager.add_lora(model_lora1)

    packed_lora = model_lora.get_lora("gate_up_proj")
    assert packed_lora and isinstance(packed_lora, PackedLoRALayerWeights)

    assert torch.allclose(packed_lora.lora_a[0],
                          model_lora.get_lora("gate_proj").lora_a)
    assert torch.allclose(packed_lora.lora_b[0],
                          model_lora.get_lora("gate_proj").lora_b)
    assert torch.allclose(packed_lora.lora_a[1],
                          model_lora.get_lora("up_proj").lora_a)
    assert torch.allclose(packed_lora.lora_b[1],
                          model_lora.get_lora("up_proj").lora_b)

    packed_lora1 = model_lora1.get_lora("gate_up_proj")
    assert packed_lora1 and isinstance(packed_lora1, PackedLoRALayerWeights)

    assert packed_lora1.lora_a[0] is None
    assert packed_lora1.lora_b[0] is None
    assert torch.allclose(packed_lora1.lora_a[1],
                          model_lora1.get_lora("up_proj").lora_a)
    assert torch.allclose(packed_lora1.lora_b[1],
                          model_lora1.get_lora("up_proj").lora_b)