quickstart.rst 7.25 KB
Newer Older
Zhuohan Li's avatar
Zhuohan Li committed
1
2
.. _quickstart:

Woosuk Kwon's avatar
Woosuk Kwon committed
3
4
5
Quickstart
==========

Zhuohan Li's avatar
Zhuohan Li committed
6
7
8
9
10
11
12
This guide shows how to use vLLM to:

* run offline batched inference on a dataset;
* build an API server for a large language model;
* start an OpenAI-compatible API server.

Be sure to complete the :ref:`installation instructions <installation>` before continuing with this guide.
Woosuk Kwon's avatar
Woosuk Kwon committed
13

14
15
16
17
18
19
20
21
.. note::

    By default, vLLM downloads model from `HuggingFace <https://huggingface.co/>`_. If you would like to use models from `ModelScope <https://www.modelscope.cn>`_ in the following examples, please set the environment variable:

    .. code-block:: shell

        export VLLM_USE_MODELSCOPE=True

Zhuohan Li's avatar
Zhuohan Li committed
22
23
24
25
26
27
Offline Batched Inference
-------------------------

We first show an example of using vLLM for offline batched inference on a dataset. In other words, we use vLLM to generate texts for a list of input prompts.

Import ``LLM`` and ``SamplingParams`` from vLLM. The ``LLM`` class is the main class for running offline inference with vLLM engine. The ``SamplingParams`` class specifies the parameters for the sampling process.
Woosuk Kwon's avatar
Woosuk Kwon committed
28
29
30

.. code-block:: python

Woosuk Kwon's avatar
Woosuk Kwon committed
31
    from vllm import LLM, SamplingParams
Woosuk Kwon's avatar
Woosuk Kwon committed
32

33
Define the list of input prompts and the sampling parameters for generation. The sampling temperature is set to 0.8 and the nucleus sampling probability is set to 0.95. For more information about the sampling parameters, refer to the `class definition <https://github.com/vllm-project/vllm/blob/main/vllm/sampling_params.py>`_.
Zhuohan Li's avatar
Zhuohan Li committed
34
35
36

.. code-block:: python

Woosuk Kwon's avatar
Woosuk Kwon committed
37
38
39
40
41
42
43
44
    prompts = [
        "Hello, my name is",
        "The president of the United States is",
        "The capital of France is",
        "The future of AI is",
    ]
    sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

Zhuohan Li's avatar
Zhuohan Li committed
45
46
47
48
Initialize vLLM's engine for offline inference with the ``LLM`` class and the `OPT-125M model <https://arxiv.org/abs/2205.01068>`_. The list of supported models can be found at :ref:`supported models <supported_models>`.

.. code-block:: python

Woosuk Kwon's avatar
Woosuk Kwon committed
49
50
    llm = LLM(model="facebook/opt-125m")

Zhuohan Li's avatar
Zhuohan Li committed
51
52
53
54
Call ``llm.generate`` to generate the outputs. It adds the input prompts to vLLM engine's waiting queue and executes the vLLM engine to generate the outputs with high throughput. The outputs are returned as a list of ``RequestOutput`` objects, which include all the output tokens.

.. code-block:: python

Woosuk Kwon's avatar
Woosuk Kwon committed
55
56
57
58
59
60
61
    outputs = llm.generate(prompts, sampling_params)

    # Print the outputs.
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Zhuohan Li's avatar
Zhuohan Li committed
62
63


64
The code example can also be found in `examples/offline_inference.py <https://github.com/vllm-project/vllm/blob/main/examples/offline_inference.py>`_.
Zhuohan Li's avatar
Zhuohan Li committed
65
66
67
68

OpenAI-Compatible Server
------------------------

69
vLLM can be deployed as a server that implements the OpenAI API protocol. This allows vLLM to be used as a drop-in replacement for applications using OpenAI API.
Simon's avatar
Simon committed
70
By default, it starts the server at ``http://localhost:8000``. You can specify the address with ``--host`` and ``--port`` arguments. The server currently hosts one model at a time (OPT-125M in the command below) and implements `list models <https://platform.openai.com/docs/api-reference/models/list>`_, `create chat completion <https://platform.openai.com/docs/api-reference/chat/completions/create>`_, and `create completion <https://platform.openai.com/docs/api-reference/completions/create>`_ endpoints. We are actively adding support for more endpoints.
Zhuohan Li's avatar
Zhuohan Li committed
71
72
73
74
75
76
77
78

Start the server:

.. code-block:: console

    $ python -m vllm.entrypoints.openai.api_server \
    $     --model facebook/opt-125m

79
80
81
82
83
84
By default, the server uses a predefined chat template stored in the tokenizer. You can override this template by using the ``--chat-template`` argument:

.. code-block:: console

   $ python -m vllm.entrypoints.openai.api_server \
   $     --model facebook/opt-125m \
85
   $     --chat-template ./examples/template_chatml.jinja
Zhuohan Li's avatar
Zhuohan Li committed
86
87
88
89
90
91
92

This server can be queried in the same format as OpenAI API. For example, list the models:

.. code-block:: console

    $ curl http://localhost:8000/v1/models

93
94
You can pass in the argument ``--api-key`` or environment variable ``VLLM_API_KEY`` to enable the server to check for API key in the header.

95
96
97
Using OpenAI Completions API with vLLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Zhuohan Li's avatar
Zhuohan Li committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Query the model with input prompts:

.. code-block:: console

    $ curl http://localhost:8000/v1/completions \
    $     -H "Content-Type: application/json" \
    $     -d '{
    $         "model": "facebook/opt-125m",
    $         "prompt": "San Francisco is a",
    $         "max_tokens": 7,
    $         "temperature": 0
    $     }'

Since this server is compatible with OpenAI API, you can use it as a drop-in replacement for any applications using OpenAI API. For example, another way to query the server is via the ``openai`` python package:

.. code-block:: python

115
116
    from openai import OpenAI

Zhuohan Li's avatar
Zhuohan Li committed
117
    # Modify OpenAI's API key and API base to use vLLM's API server.
118
119
120
121
122
123
124
    openai_api_key = "EMPTY"
    openai_api_base = "http://localhost:8000/v1"
    client = OpenAI(
        api_key=openai_api_key,
        base_url=openai_api_base,
    )
    completion = client.completions.create(model="facebook/opt-125m",
Zhuohan Li's avatar
Zhuohan Li committed
125
126
127
                                          prompt="San Francisco is a")
    print("Completion result:", completion)

128
For a more detailed client example, refer to `examples/openai_completion_client.py <https://github.com/vllm-project/vllm/blob/main/examples/openai_completion_client.py>`_.
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

Using OpenAI Chat API with vLLM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The vLLM server is designed to support the OpenAI Chat API, allowing you to engage in dynamic conversations with the model. The chat interface is a more interactive way to communicate with the model, allowing back-and-forth exchanges that can be stored in the chat history. This is useful for tasks that require context or more detailed explanations.

Querying the model using OpenAI Chat API:

You can use the `create chat completion <https://platform.openai.com/docs/api-reference/chat/completions/create>`_ endpoint to communicate with the model in a chat-like interface:

.. code-block:: console

    $ curl http://localhost:8000/v1/chat/completions \
    $     -H "Content-Type: application/json" \
    $     -d '{
    $         "model": "facebook/opt-125m",
    $         "messages": [
    $             {"role": "system", "content": "You are a helpful assistant."},
    $             {"role": "user", "content": "Who won the world series in 2020?"}
    $         ]
    $     }'

Python Client Example:

Using the `openai` python package, you can also communicate with the model in a chat-like manner:

.. code-block:: python

157
    from openai import OpenAI
158
    # Set OpenAI's API key and API base to use vLLM's API server.
159
160
161
162
163
164
165
166
167
    openai_api_key = "EMPTY"
    openai_api_base = "http://localhost:8000/v1"

    client = OpenAI(
        api_key=openai_api_key,
        base_url=openai_api_base,
    )

    chat_response = client.chat.completions.create(
168
169
170
171
172
173
174
175
176
        model="facebook/opt-125m",
        messages=[
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": "Tell me a joke."},
        ]
    )
    print("Chat response:", chat_response)

For more in-depth examples and advanced features of the chat API, you can refer to the official OpenAI documentation.