gpt_neox.py 10.8 KB
Newer Older
1
2
# coding=utf-8
# Adapted from https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py
3
# Copyright 2023 The CacheFlow team.
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
18
19
20
21
"""Inference-only GPT-NeoX model compatible with HuggingFace weights.

The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
22
23
24
25
from typing import Dict, List, Optional, Tuple

import torch
from torch import nn
26
27
28
from transformers import GPTNeoXConfig

from cacheflow.model_executor.input_metadata import InputMetadata
Woosuk Kwon's avatar
Woosuk Kwon committed
29
from cacheflow.model_executor.layers.activation import get_act_fn
30
31
32
33
34
from cacheflow.model_executor.layers.attention import GPTNeoXCacheFlowAttention
from cacheflow.model_executor.layers.sampler import Sampler
from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator,
                                                   load_tensor_parallel_weights)
from cacheflow.model_executor.parallel_utils.parallel_state import (
35
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
36
37
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
    VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
38
39
40
41
42
43
44
from cacheflow.sequence import SequenceOutputs

KVCache = Tuple[torch.Tensor, torch.Tensor]


class GPTNeoXAttention(nn.Module):

45
    def __init__(self, config: GPTNeoXConfig):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
        super().__init__()
        self.total_num_heads = config.num_attention_heads
        self.hidden_size = config.hidden_size
        self.head_size = self.hidden_size // self.total_num_heads

        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
        assert self.total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = self.total_num_heads // tensor_model_parallel_world_size

        self.query_key_value = ColumnParallelLinear(config.hidden_size,
                                                    3 * config.hidden_size,
                                                    gather_output=False,
                                                    perform_initialization=False)
        self.dense = RowParallelLinear(config.hidden_size, config.hidden_size,
                                       input_is_parallel=True,
                                       perform_initialization=False)

        scaling = self.head_size ** -0.5
        rotary_dim = int(self.head_size * config.rotary_pct)
        assert rotary_dim % 2 == 0
66
67
        self.attn = GPTNeoXCacheFlowAttention(self.num_heads, self.head_size,
                                              scaling, rotary_dim)
68
69
70

    def forward(
        self,
71
        position_ids: torch.Tensor,
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        qkv, _ = self.query_key_value(hidden_states)

        q, k, v = qkv.chunk(chunks=3, dim=-1)
        k_cache, v_cache = kv_cache
        attn_output = self.attn(
            position_ids, q, k, v, k_cache, v_cache, input_metadata, cache_event)
        output, _ = self.dense(attn_output)
        return output


class GPTNeoXMLP(nn.Module):
88

89
    def __init__(self, config: GPTNeoXConfig):
90
91
92
93
94
95
96
97
        super().__init__()
        self.dense_h_to_4h = ColumnParallelLinear(config.hidden_size,
                                                  config.intermediate_size,
                                                  gather_output=False,
                                                  perform_initialization=False)
        self.dense_4h_to_h = RowParallelLinear(config.intermediate_size, config.hidden_size,
                                               input_is_parallel=True,
                                               perform_initialization=False)
Woosuk Kwon's avatar
Woosuk Kwon committed
98
        self.act = get_act_fn(config.hidden_act)
99
100
101
102
103
104
105
106
107
108

    def forward(self, hidden_states):
        hidden_states, _ = self.dense_h_to_4h(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states, _ = self.dense_4h_to_h(hidden_states)
        return hidden_states


class GPTNeoXLayer(nn.Module):

109
    def __init__(self, config: GPTNeoXConfig):
110
111
112
113
114
115
116
117
118
        super().__init__()
        self.use_parallel_residual = config.use_parallel_residual
        self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.attention = GPTNeoXAttention(config)
        self.mlp = GPTNeoXMLP(config)

    def forward(
        self,
119
        position_ids: torch.Tensor,
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        attn_input = self.input_layernorm(hidden_states)
        attn_output = self.attention(
            position_ids=position_ids,
            hidden_states=attn_input,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )

        if self.use_parallel_residual:
            # pseudocode:
            # x = x + attn(ln1(x)) + mlp(ln2(x))
            mlp_input = self.post_attention_layernorm(hidden_states)
            mlp_output = self.mlp(mlp_input)
            hidden_states = mlp_output + attn_output + hidden_states
        else:
            # pseudocode:
            # x = x + attn(ln1(x))
            # x = x + mlp(ln2(x))
            attn_output = attn_output + hidden_states
            mlp_input = self.post_attention_layernorm(attn_output)
            mlp_output = self.mlp(mlp_input)
            hidden_states = mlp_output + attn_output
        return hidden_states


class GPTNeoXModel(nn.Module):
152
    def __init__(self, config: GPTNeoXConfig):
153
154
155
156
157
158
159
160
161
162
        super().__init__()
        self.config = config

        self.embed_in = VocabParallelEmbedding(config.vocab_size, config.hidden_size,
                                               perform_initialization=False)
        self.layers = nn.ModuleList([GPTNeoXLayer(config) for _ in range(config.num_hidden_layers)])
        self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(
        self,
163
164
        input_ids: torch.Tensor,
        position_ids: torch.Tensor,
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        hidden_states = self.embed_in(input_ids)
        for i in range(len(self.layers)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.layers[i]
            hidden_states = layer(
                position_ids,
                hidden_states,
                kv_caches[i],
                input_metadata,
                cache_event,
            )
        hidden_states = self.final_layer_norm(hidden_states)
        return hidden_states


class GPTNeoXForCausalLM(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.config = config
        self.gpt_neox = GPTNeoXModel(config)
        self.embed_out = ColumnParallelLinear(config.hidden_size, config.vocab_size,
                                              bias=False, gather_output=False,
                                              perform_initialization=False)
Woosuk Kwon's avatar
Woosuk Kwon committed
196
        self.sampler = Sampler(config.vocab_size)
197
198
199

    def forward(
        self,
200
201
        input_ids: torch.Tensor,
        positions: torch.Tensor,
202
203
204
205
206
207
208
209
210
211
212
213
214
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> Dict[int, SequenceOutputs]:
        hidden_states = self.gpt_neox(
            input_ids, positions, kv_caches, input_metadata, cache_events)
        next_tokens = self.sampler(
            self.embed_out.weight, hidden_states, input_metadata)
        return next_tokens

    _column_parallel_weights = ["embed_in.weight", "embed_out.weight", "dense_h_to_4h.weight", "dense_h_to_4h.bias"]
    _row_parallel_weights = ["dense.weight", "dense_4h_to_h.weight"]

215
216
217
    def load_weights(self, model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     use_np_cache: bool = False):
218
219
        tensor_model_parallel_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()
220
221
222
223
224
225
        for name, loaded_weight in hf_model_weights_iterator(
            model_name_or_path, cache_dir, use_np_cache):
            if ("attention.bias" in name or "attention.masked_bias" in name
                or "rotary_emb.inv_freq" in name):
                continue
            param = state_dict[name]
226
227
            if "query_key_value" in name:
                # NOTE(woosuk): GPT-NeoX's fused QKV has the shape of
Woosuk Kwon's avatar
Woosuk Kwon committed
228
229
                # [num_heads * 3 * head_size, hidden_size], while the
                # required shape is [3 * num_heads * head_size, hidden_size].
230
231
232
233
234
235
236
237
238
239
240
                # Thus, we need weight conversion.
                shard_size = param.shape[0]
                loaded_weight = loaded_weight[shard_size * tensor_model_parallel_rank
                                              :shard_size * (tensor_model_parallel_rank + 1)]

                num_heads = self.config.num_attention_heads
                hidden_size = self.config.hidden_size
                head_size = hidden_size // num_heads
                if 'query_key_value.weight' in name:
                    loaded_weight = loaded_weight.view(-1, 3, head_size, hidden_size)
                    loaded_weight = loaded_weight.transpose(0, 1)
Woosuk Kwon's avatar
Woosuk Kwon committed
241
                    loaded_weight = loaded_weight.reshape(-1, hidden_size)
242
243
244
                elif 'query_key_value.bias' in name:
                    loaded_weight = loaded_weight.view(-1, 3, head_size)
                    loaded_weight = loaded_weight.transpose(0, 1)
Woosuk Kwon's avatar
Woosuk Kwon committed
245
                    loaded_weight = loaded_weight.reshape(-1)
246
                else:
247
248
249
                    raise ValueError(f"Unexpected weight name: {name}")
            load_tensor_parallel_weights(param, loaded_weight, name,
                                         self._column_parallel_weights,
250
251
                                         self._row_parallel_weights,
                                         tensor_model_parallel_rank)