benchmark_text_completion.py 10.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
import argparse
import logging
import os
import pickle
import time
from typing import List

from tqdm import tqdm
from transformers import AutoConfig

from benchmark.trace import generate_text_completion_requests
from cacheflow.master.simple_frontend import SimpleFrontend
from cacheflow.master.server import (Server, add_server_arguments,
14
15
                                     process_server_arguments,
                                     initialize_cluster)
16
17
18
19
20
21
22
23
24
25
26
27
28
from cacheflow.sampling_params import SamplingParams
from cacheflow.utils import get_gpu_memory, get_cpu_memory


logger = logging.getLogger(__name__)


def main(args: argparse.Namespace):
    assert args.pipeline_parallel_size == 1, (
        'Pipeline parallelism is not supported yet.')

    (num_nodes, num_devices_per_node, distributed_init_method,
    all_stage_devices) = (
29
30
        initialize_cluster(
            use_ray=args.use_ray,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
            pipeline_parallel_size=args.pipeline_parallel_size,
            tensor_parallel_size=args.tensor_parallel_size))

    # Create a server.
    server = Server(
        model=args.model,
        model_path=args.model_path,
        use_dummy_weights=args.use_dummy_weights,
        pipeline_parallel_size=args.pipeline_parallel_size,
        tensor_parallel_size=args.tensor_parallel_size,
        block_size=args.block_size,
        dtype=args.dtype,
        seed=args.seed,
        swap_space=args.swap_space,
        max_num_batched_tokens=args.max_num_batched_tokens,
        max_num_sequences=args.max_num_sequences,
        num_nodes=num_nodes,
        num_devices_per_node=num_devices_per_node,
        distributed_init_method=distributed_init_method,
        all_stage_devices=all_stage_devices,
        gpu_memory=get_gpu_memory(),
        cpu_memory=get_cpu_memory(),
53
        use_ray=args.use_ray,
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        collect_stats=True,
        do_memory_analysis=args.do_memory_analysis,
    )

    # Create a frontend.
    frontend = SimpleFrontend(
        model_name=args.model,
        block_size=args.block_size,
    )
    # Generate requests.
    requests = generate_text_completion_requests(
        args.dataset,
        args.request_rate,
        args.duration,
        args.seed,
        args.n1,
        args.n2,
        args.n3,
        args.n4,
        args.n6,
        args.n2_beam,
        args.n4_beam,
        args.n6_beam,
        args.n8_beam,
    )

    # Warm up.
    logger.info('Warming up.')
    num_warmup_requests = 8
    warmup_input_len = 8
    warmup_output_len = 32
    warmup_sampling_params = SamplingParams(
        n=1,
        temperature=1.0,
        top_p=0.99,
        max_num_steps=warmup_output_len,
        use_beam_search=False,
        stop_token_ids=set(),
        num_logprobs=0,
        context_window_size=None,
    )
    for _ in range(num_warmup_requests):
        frontend._add_query([0] * warmup_input_len, warmup_sampling_params)
    server.add_sequence_groups(frontend.get_inputs())
    while True:
        server.step()
        if not server.has_unfinished_requests():
            break

    # Start benchmarking.
    logger.info('Start benchmarking.')
    # Initialize tqdm.
    pbar = tqdm(total=len(requests), desc='Finished requests')

    finished = []
    server.scheduler.reset_stats()
    start_time = time.time()
    while True:
        now = time.time()
        if args.timeout is not None and now - start_time > args.timeout:
            logger.info('Timeout. Stop benchmarking.')
            break

        while requests:
            if requests[0][0] <= now - start_time:
                request_time, input_tokens, sampling_params = requests.pop(0)
                frontend._add_query(
                    input_tokens, sampling_params, arrival_time=start_time + request_time)
            else:
                break
        server.add_sequence_groups(frontend.get_inputs())
        updated_seq_groups = server.step()

        now = time.time()
        for seq_group in updated_seq_groups:
            if not seq_group.is_finished():
                continue
            arrival_time = seq_group.arrival_time
            finish_time = now
            for seq in seq_group.get_seqs():
                seq_len = seq.get_len()
                output_len = seq_len - seq.prompt_len
                finished.append({
                    'group_id': seq_group.group_id,
                    'seq_id': seq.seq_id,
139
                    'arrival_time': arrival_time,
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
                    'finish_time': finish_time,
                    'prompt_len': seq.prompt_len,
                    'output_len': output_len,
                })
            pbar.update(1)

        if not (requests or server.has_unfinished_requests()):
            break
    pbar.close()
    logger.info('Finish benchmarking. Saving stats.')
    server.scheduler.save_stats(args.output_dir)
    with open(os.path.join(args.output_dir, 'sequences.pkl'), 'wb') as f:
        pickle.dump(finished, f)
    logger.info('Done.')


def get_model_name(model: str) -> str:
    OPT_MODELS = [
        'opt-125m',
        'opt-350m',
        'opt-1.3b',
        'opt-2.7b',
        'opt-6.7b',
        'opt-13b',
        'opt-30b',
        'opt-66b',
        'opt-175b',
    ]
    for opt_model in OPT_MODELS:
        if opt_model in model:
            return opt_model

    config = AutoConfig.from_pretrained(model)
    assert config.model_type == 'llama'
    hidden_size = config.hidden_size
    if hidden_size == 4096:
        return 'llama-7b'
    elif hidden_size == 5120:
        return 'llama-13b'
    elif hidden_size == 6656:
        return 'llama-30b'
    elif hidden_size == 8192:
        return 'llama-65b'
    else:
        raise ValueError(f'Unknown model: {model}')


def get_dataset_name(dataset: str) -> str:
    if 'sharegpt' in dataset.lower():
        return 'sharegpt'
    elif 'alpaca' in dataset.lower():
        return 'alpaca'
    else:
        raise ValueError(f'Unknown dataset: {dataset}')


def get_sampling_dir_name(
    n1: float,
    n2: float,
    n3: float,
    n4: float,
    n6: float,
    n2_beam: float,
    n4_beam: float,
    n6_beam: float,
    n8_beam: float,
) -> str:
    method = ''
    if n1 > 0.0:
        method = 'n1' if n1 == 1.0 else method + f'n1-{n1}-'
    if n2 > 0.0:
        method = 'n2' if n2 == 1.0 else method + f'n2-{n2}-'
    if n3 > 0.0:
        method = 'n3' if n3 == 1.0 else method + f'n3-{n3}-'
    if n4 > 0.0:
        method = 'n4' if n4 == 1.0 else method + f'n4-{n4}-'
    if n6 > 0.0:
        method = 'n6' if n6 == 1.0 else method + f'n6-{n6}-'
    if n2_beam > 0.0:
        method = 'n2-beam' if n2_beam == 1.0 else method + f'n2-beam-{n2_beam}-'
    if n4_beam > 0.0:
        method = 'n4-beam' if n4_beam == 1.0 else method + f'n4-beam-{n4_beam}-'
    if n6_beam > 0.0:
        method = 'n6-beam' if n6_beam == 1.0 else method + f'n6-beam-{n6_beam}-'
    if n8_beam > 0.0:
        method = 'n8-beam' if n8_beam == 1.0 else method + f'n8-beam-{n8_beam}-'
    return method[:-1] if method.endswith('-') else method


if __name__ == '__main__':
230
231
232
    parser = argparse.ArgumentParser(
        description='Benchmark the performance on a series of requests.')
    parser = add_server_arguments(parser)
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    parser.add_argument('--output-dir', type=str, help='path to output directory', default=None)

    parser.add_argument('--dataset', type=str, help='path to dataset', required=True)
    parser.add_argument('--request-rate', type=float, help='reqs/sec', required=True)
    parser.add_argument('--duration', type=int, help='duration in seconds', required=True)
    parser.add_argument('--do-memory-analysis', action='store_true',
        help='do memory analysis (This will lower the throughput. Use this only for analysis.)')
    parser.add_argument('--timeout', type=int, help='time out in seconds', default=None)

    parser.add_argument('--n1', type=float, help='ratio of requests with n=1', default=0.0)
    parser.add_argument('--n2', type=float, help='ratio of requests with n=2', default=0.0)
    parser.add_argument('--n3', type=float, help='ratio of requests with n=3', default=0.0)
    parser.add_argument('--n4', type=float, help='ratio of requests with n=4', default=0.0)
    parser.add_argument('--n6', type=float, help='ratio of requests with n=6', default=0.0)
    parser.add_argument('--n2-beam', type=float, help='ratio of requests with n=2 & beam search', default=0.0)
    parser.add_argument('--n4-beam', type=float, help='ratio of requests with n=4 & beam search', default=0.0)
    parser.add_argument('--n6-beam', type=float, help='ratio of requests with n=6 & beam search', default=0.0)
    parser.add_argument('--n8-beam', type=float, help='ratio of requests with n=8 & beam search', default=0.0)
    args = parser.parse_args()
252
    args = process_server_arguments(args)
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    if args.n1 + args.n2 + args.n3 + args.n4 + args.n6 + args.n2_beam + args.n4_beam + args.n6_beam + args.n8_beam != 1.0:
        raise ValueError('The ratios of requests must sum to 1.')

    model_name = get_model_name(args.model)
    dataset_name = get_dataset_name(args.dataset)
    if 'opt' in model_name:
        if 'opt' not in args.dataset.lower():
            raise ValueError(f'OPT models can only be used with OPT datasets.')
    elif 'llama' in model_name:
        if 'llama' not in args.dataset.lower():
            raise ValueError(f'Llama models can only be used with Llama datasets.')

    dataset_name = 'sharegpt' if 'sharegpt' in args.dataset else 'alpaca'
    sample_dir = get_sampling_dir_name(
        args.n1, args.n2, args.n3, args.n4, args.n6, args.n2_beam, args.n4_beam, args.n6_beam, args.n8_beam)
    if args.output_dir is None:
        args.output_dir = os.path.join(
            '../exp',
            dataset_name,
            f'{model_name}-tp{args.tensor_parallel_size}',
            sample_dir,
            'cacheflow',
275
            f'block{args.block_size}',
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
            f'req-rate-{args.request_rate}',
            f'seed{args.seed}',
            f'duration-{args.duration}',
        )
    os.makedirs(args.output_dir, exist_ok=True)

    # Set up logging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
        handlers=[
            logging.StreamHandler(),
            logging.FileHandler(os.path.join(args.output_dir, 'log.txt')),
        ],
    )
    logger.info(args)

    main(args)