llm_engine.py 13.4 KB
Newer Older
1
2
3
import time
from typing import Any, List, Optional

Woosuk Kwon's avatar
Woosuk Kwon committed
4
5
6
7
8
9
10
11
12
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
                         SchedulerConfig)
from vllm.core.scheduler import Scheduler
from vllm.engine.arg_utils import EngineArgs
from vllm.engine.ray_utils import DeviceID, initialize_cluster, ray
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
from vllm.sequence import Sequence, SequenceGroup, SequenceStatus
13
14
from vllm.transformers_utils.tokenizer import (detokenize_incrementally,
                                               get_tokenizer)
Woosuk Kwon's avatar
Woosuk Kwon committed
15
16
from vllm.utils import Counter
from vllm.worker.worker import Worker
17
18
19
20

logger = init_logger(__name__)


21
class LLMEngine:
Zhuohan Li's avatar
Zhuohan Li committed
22
    """An LLM engine that receives requests and generates texts.
23

Woosuk Kwon's avatar
Woosuk Kwon committed
24
    This is the main class for the vLLM engine. It receives requests
25
26
27
28
29
30
31
    from clients and generates texts from the LLM. It includes a tokenizer, a
    language model (possibly distributed across multiple GPUs), and GPU memory
    space allocated for intermediate states (aka KV cache). This class utilizes
    iteration-level scheduling and efficient memory management to maximize the
    serving throughput.

    The `LLM` class wraps this class for offline batched inference and the
32
    `AsyncLLMEngine` class wraps this class for online serving.
33

Zhuohan Li's avatar
Zhuohan Li committed
34
35
    NOTE: The config arguments are derived from the `EngineArgs` class. For the
    comprehensive list of arguments, see `EngineArgs`.
36
37
38
39
40
41
42
43
44
45
46
47
48

    Args:
        model_config: The configuration related to the LLM model.
        cache_config: The configuration related to the KV cache memory
            management.
        parallel_config: The configuration related to distributed execution.
        scheduler_config: The configuration related to the request scheduler.
        distributed_init_method: The initialization method for distributed
            execution. See `torch.distributed.init_process_group` for details.
        stage_devices: The list of devices for each stage. Each stage is a list
            of (rank, node_resource, device) tuples.
        log_stats: Whether to log statistics.
    """
49
50
51
52
53
54
55
56

    def __init__(
        self,
        model_config: ModelConfig,
        cache_config: CacheConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        distributed_init_method: str,
57
        stage_devices: List[List[DeviceID]],
58
        log_stats: bool,
59
60
    ) -> None:
        logger.info(
Zhuohan Li's avatar
Zhuohan Li committed
61
            "Initializing an LLM engine with config: "
62
            f"model={model_config.model!r}, "
63
            f"tokenizer={model_config.tokenizer!r}, "
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
            f"dtype={model_config.dtype}, "
            f"use_dummy_weights={model_config.use_dummy_weights}, "
            f"download_dir={model_config.download_dir!r}, "
            f"use_np_weights={model_config.use_np_weights}, "
            f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
            f"seed={model_config.seed})"
        )
        # TODO(woosuk): Print more configs in debug mode.

        self.model_config = model_config
        self.cache_config = cache_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.log_stats = log_stats
        self._verify_args()

80
        self.tokenizer = get_tokenizer(model_config.tokenizer)
81
82
83
84
85
86
87
        self.seq_counter = Counter()

        # Create the parallel GPU workers.
        self.workers: List[Worker] = []
        assert len(stage_devices) == 1, "Only support one stage for now."
        for rank, node_resource, _ in stage_devices[0]:
            worker_cls = Worker
88
            if self.parallel_config.worker_use_ray:
89
90
91
                worker_cls = ray.remote(
                    num_cpus=0,
                    num_gpus=1,
Zhuohan Li's avatar
Zhuohan Li committed
92
                    resources={node_resource: 1e-3},
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
                )(worker_cls).remote

            worker = worker_cls(
                model_config,
                parallel_config,
                scheduler_config,
                rank,
                distributed_init_method,
            )
            self.workers.append(worker)
        # Profile the memory usage and initialize the cache.
        self._init_cache()

        # Create the scheduler.
        self.scheduler = Scheduler(scheduler_config, cache_config, log_stats)

    def _verify_args(self) -> None:
        self.model_config.verify_with_parallel_config(self.parallel_config)
111
        self.cache_config.verify_with_parallel_config(self.parallel_config)
112
113

    def _init_cache(self) -> None:
114
        """Profiles the memory usage and initializes the KV cache."""
115
116
117
118
119
120
        # Get the maximum number of blocks that can be allocated on GPU and CPU.
        num_blocks = self._run_workers(
            "profile_num_available_blocks",
            get_all_outputs=True,
            block_size=self.cache_config.block_size,
            gpu_memory_utilization=self.cache_config.gpu_memory_utilization,
121
            cpu_swap_space=self.cache_config.swap_space_bytes,
122
123
124
125
126
127
128
129
130
131
        )

        # Since we use a shared centralized controller, we take the minimum
        # number of blocks across all workers to make sure all the memory
        # operators can be applied to all workers.
        num_gpu_blocks = min(b[0] for b in num_blocks)
        num_cpu_blocks = min(b[1] for b in num_blocks)
        # FIXME(woosuk): Change to debug log.
        logger.info(f'# GPU blocks: {num_gpu_blocks}, '
                    f'# CPU blocks: {num_cpu_blocks}')
132

133
        if num_gpu_blocks <= 0:
134
135
136
137
            raise ValueError("No available memory for the cache blocks. "
                             "Try increasing `gpu_memory_utilization` when "
                             "initializing the engine.")

138
139
140
141
142
143
        self.cache_config.num_gpu_blocks = num_gpu_blocks
        self.cache_config.num_cpu_blocks = num_cpu_blocks

        # Initialize the cache.
        self._run_workers("init_cache_engine", cache_config=self.cache_config)

144
    @classmethod
Zhuohan Li's avatar
Zhuohan Li committed
145
146
147
148
149
    def from_engine_args(cls, engine_args: EngineArgs) -> "LLMEngine":
        """Creates an LLM engine from the engine arguments."""
        # Create the engine configs.
        engine_configs = engine_args.create_engine_configs()
        parallel_config = engine_configs[2]
150
151
        # Initialize the cluster.
        distributed_init_method, devices = initialize_cluster(parallel_config)
Zhuohan Li's avatar
Zhuohan Li committed
152
153
154
155
        # Create the LLM engine.
        engine = cls(*engine_configs, distributed_init_method, devices,
                     log_stats=not engine_args.disable_log_stats)
        return engine
156

157
158
159
    def add_request(
        self,
        request_id: str,
Woosuk Kwon's avatar
Woosuk Kwon committed
160
        prompt: Optional[str],
161
162
163
164
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]] = None,
        arrival_time: Optional[float] = None,
    ) -> None:
Zhuohan Li's avatar
Zhuohan Li committed
165
        """Add a request to the engine's request pool.
166
167

        The request is added to the request pool and will be processed by the
Zhuohan Li's avatar
Zhuohan Li committed
168
        scheduler as `engine.step()` is called. The exact scheduling policy is
169
170
171
172
173
174
175
176
177
178
179
180
        determined by the scheduler.

        Args:
            request_id: The unique ID of the request.
            prompt: The prompt string. Can be None if prompt_token_ids is
                provided.
            sampling_params: The sampling parameters for text generation.
            prompt_token_ids: The token IDs of the prompt. If None, we
                use the tokenizer to convert the prompts to token IDs.
            arrival_time: The arrival time of the request. If None, we use
                the current time.
        """
181
182
183
        if arrival_time is None:
            arrival_time = time.time()
        if prompt_token_ids is None:
Woosuk Kwon's avatar
Woosuk Kwon committed
184
            assert prompt is not None
185
186
187
188
189
            prompt_token_ids = self.tokenizer.encode(prompt)

        # Create the sequences.
        block_size = self.cache_config.block_size
        seqs: List[Sequence] = []
190
        for _ in range(sampling_params.best_of):
191
192
193
194
195
196
197
198
199
200
201
            seq_id = next(self.seq_counter)
            seq = Sequence(seq_id, prompt, prompt_token_ids, block_size)
            seqs.append(seq)

        # Create the sequence group.
        seq_group = SequenceGroup(request_id, seqs, sampling_params,
                                  arrival_time)

        # Add the sequence group to the scheduler.
        self.scheduler.add_seq_group(seq_group)

202
    def abort_request(self, request_id: str) -> None:
203
204
205
206
207
        """Aborts a request with the given ID.

        Args:
            request_id: The ID of the request to abort.
        """
208
209
        self.scheduler.abort_seq_group(request_id)

210
    def get_num_unfinished_requests(self) -> int:
211
        """Gets the number of unfinished requests."""
212
213
        return self.scheduler.get_num_unfinished_seq_groups()

214
    def has_unfinished_requests(self) -> bool:
215
        """Returns True if there are unfinished requests."""
216
217
218
        return self.scheduler.has_unfinished_seqs()

    def step(self) -> List[RequestOutput]:
219
220
        """Performs one decoding iteration and returns newly generated results.

Zhuohan Li's avatar
Zhuohan Li committed
221
        This function performs one decoding iteration of the engine. It first
222
223
224
225
226
        schedules the sequences to be executed in the next iteration and the
        token blocks to be swapped in/out/copy. Then, it executes the model
        and updates the scheduler with the model outputs. Finally, it decodes
        the sequences and returns the newly generated results.
        """
227
228
229
230
231
232
233
234
235
236
237
238
239
        seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
        if (not seq_group_metadata_list) and scheduler_outputs.is_empty():
            # Nothing to do.
            return []

        # Execute the model.
        output = self._run_workers(
            "execute_model",
            seq_group_metadata_list=seq_group_metadata_list,
            blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
            blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
            blocks_to_copy=scheduler_outputs.blocks_to_copy,
        )
240
241
242
243
244
245
246
247
248
        # Update the scheduler with the model outputs.
        seq_groups = self.scheduler.update(output)

        # Decode the sequences.
        self._decode_sequences(seq_groups)
        # Stop the sequences that meet the stopping criteria.
        self._stop_sequences(seq_groups)
        # Free the finished sequence groups.
        self.scheduler.free_finished_seq_groups()
249
250
251

        # Create the outputs.
        request_outputs: List[RequestOutput] = []
252
253
        for seq_group in seq_groups:
            request_output = RequestOutput.from_seq_group(seq_group)
254
255
256
            request_outputs.append(request_output)
        return request_outputs

257
    def _decode_sequences(self, seq_groups: List[SequenceGroup]) -> None:
258
        """Decodes the sequence outputs."""
259
        for seq_group in seq_groups:
260
261
262
263
264
265
266
267
268
            for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
                new_token, new_output_text = detokenize_incrementally(
                    self.tokenizer,
                    seq.output_tokens,
                    seq.get_last_token_id(),
                    skip_special_tokens=True,
                )
                seq.output_tokens.append(new_token)
                seq.output_text = new_output_text
269
270

    def _stop_sequences(self, seq_groups: List[SequenceGroup]) -> None:
271
        """Stop the finished sequences."""
272
273
274
275
276
277
278
279
280
281
        for seq_group in seq_groups:
            sampling_params = seq_group.sampling_params
            for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):
                # Check if the sequence has generated a stop string.
                stopped = False
                for stop_str in sampling_params.stop:
                    if seq.output_text.endswith(stop_str):
                        # Truncate the output text so that the stop string is
                        # not included in the output.
                        seq.output_text = seq.output_text[:-len(stop_str)]
Zhuohan Li's avatar
Zhuohan Li committed
282
283
                        self.scheduler.free_seq(seq,
                                                SequenceStatus.FINISHED_STOPPED)
284
285
286
287
288
289
290
                        stopped = True
                        break
                if stopped:
                    continue

                # Check if the sequence has reached max_tokens.
                if seq.get_output_len() == sampling_params.max_tokens:
Zhuohan Li's avatar
Zhuohan Li committed
291
292
                    self.scheduler.free_seq(
                        seq, SequenceStatus.FINISHED_LENGTH_CAPPED)
293
294
295
296
                    continue
                # Check if the sequence has generated the EOS token.
                if not sampling_params.ignore_eos:
                    if seq.get_last_token_id() == self.tokenizer.eos_token_id:
Zhuohan Li's avatar
Zhuohan Li committed
297
298
                        self.scheduler.free_seq(seq,
                                                SequenceStatus.FINISHED_STOPPED)
299
300
                        continue

301
302
303
304
305
306
307
    def _run_workers(
        self,
        method: str,
        get_all_outputs: bool = False,
        *args,
        **kwargs,
    ) -> Any:
308
        """Runs the given method on all workers."""
309
310
311
        all_outputs = []
        for worker in self.workers:
            executor = getattr(worker, method)
312
            if self.parallel_config.worker_use_ray:
313
                executor = executor.remote
Zhuohan Li's avatar
Zhuohan Li committed
314

315
316
            output = executor(*args, **kwargs)
            all_outputs.append(output)
Zhuohan Li's avatar
Zhuohan Li committed
317

318
        if self.parallel_config.worker_use_ray:
319
320
321
322
323
324
325
326
327
328
            all_outputs = ray.get(all_outputs)

        if get_all_outputs:
            return all_outputs

        # Make sure all workers have the same results.
        output = all_outputs[0]
        for other_output in all_outputs[1:]:
            assert output == other_output
        return output