llama.py 11.6 KB
Newer Older
1
2
# coding=utf-8
# Adapted from https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
3
# Copyright 2023 The CacheFlow team.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
22
23
24
25
26
"""Inference-only LLaMA model compatible with HuggingFace weights.

The input of the model is flattened to a 1D tensor of tokens. The model uses
InputMetadata to extract the original 2D shape of the input.
"""
Woosuk Kwon's avatar
Woosuk Kwon committed
27
28
29
30
31
32
from typing import Dict, List, Optional, Tuple

import torch
from torch import nn
from transformers import LlamaConfig

33
34
35
36
37
38
39
40
41
from cacheflow.sequence import SequenceOutputs
from cacheflow.model_executor.input_metadata import InputMetadata
from cacheflow.model_executor.layers.activation import SiluAndMul
from cacheflow.model_executor.layers.layernorm import RMSNorm
from cacheflow.model_executor.layers.attention import GPTNeoXCacheFlowAttention
from cacheflow.model_executor.layers.sampler import Sampler
from cacheflow.model_executor.weight_utils import (hf_model_weights_iterator,
                                                   load_tensor_parallel_weights)
from cacheflow.model_executor.parallel_utils.parallel_state import (
Woosuk Kwon's avatar
Woosuk Kwon committed
42
    get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
43
44
from cacheflow.model_executor.parallel_utils.tensor_parallel import (
    VocabParallelEmbedding, ColumnParallelLinear, RowParallelLinear)
Woosuk Kwon's avatar
Woosuk Kwon committed
45
46
47
48
49
50
from cacheflow.sequence import SequenceOutputs

KVCache = Tuple[torch.Tensor, torch.Tensor]


class LlamaMLP(nn.Module):
51

Woosuk Kwon's avatar
Woosuk Kwon committed
52
53
54
55
56
57
58
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
    ):
        super().__init__()
59
60
61
        self.gate_up_proj = ColumnParallelLinear(hidden_size, 2 * intermediate_size,
                                                 bias=False, gather_output=False,
                                                 perform_initialization=False)
Woosuk Kwon's avatar
Woosuk Kwon committed
62
63
64
        self.down_proj = RowParallelLinear(intermediate_size, hidden_size,
                                           bias=False, input_is_parallel=True,
                                           perform_initialization=False)
Woosuk Kwon's avatar
Woosuk Kwon committed
65
66
67
68
        if hidden_act != 'silu':
            raise ValueError(f'Unsupported activation: {hidden_act}. '
                             'Only silu is supported for now.')
        self.act_fn = SiluAndMul()
Woosuk Kwon's avatar
Woosuk Kwon committed
69
70

    def forward(self, x):
71
        gate_up, _ = self.gate_up_proj(x)
Woosuk Kwon's avatar
Woosuk Kwon committed
72
        x = self.act_fn(gate_up)
Woosuk Kwon's avatar
Woosuk Kwon committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
        x, _ = self.down_proj(x)
        return x


class LlamaAttention(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        num_heads: int,
    ):
        super().__init__()
        self.hidden_size = hidden_size
        tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
        self.total_num_heads = num_heads
        assert self.total_num_heads % tensor_model_parallel_world_size == 0
        self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
        self.head_dim = hidden_size // self.total_num_heads
        self.scaling = self.head_dim ** -0.5

93
        self.qkv_proj = ColumnParallelLinear(
Woosuk Kwon's avatar
Woosuk Kwon committed
94
            hidden_size,
95
            3 * self.total_num_heads * self.head_dim,
Woosuk Kwon's avatar
Woosuk Kwon committed
96
97
98
99
100
101
102
103
104
105
106
            bias=False,
            gather_output=False,
            perform_initialization=False,
        )
        self.o_proj = RowParallelLinear(
            self.total_num_heads * self.head_dim,
            hidden_size,
            bias=False,
            input_is_parallel=True,
            perform_initialization=False,
        )
107
108
        self.attn = GPTNeoXCacheFlowAttention(self.num_heads, self.head_dim,
                                              self.scaling, rotary_dim=self.head_dim)
Woosuk Kwon's avatar
Woosuk Kwon committed
109
110
111
112
113
114
115
116
117

    def forward(
        self,
        positions: torch.LongTensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
118
        qkv, _ = self.qkv_proj(hidden_states)
Woosuk Kwon's avatar
Woosuk Kwon committed
119
        q, k, v = qkv.chunk(chunks=3, dim=-1)
120
        k_cache, v_cache = kv_cache
Woosuk Kwon's avatar
Woosuk Kwon committed
121
        attn_output = self.attn(
122
            positions, q, k, v, k_cache, v_cache, input_metadata, cache_event)
Woosuk Kwon's avatar
Woosuk Kwon committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        output, _ = self.o_proj(attn_output)
        return output


class LlamaDecoderLayer(nn.Module):

    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = LlamaAttention(
            hidden_size=self.hidden_size,
            num_heads=config.num_attention_heads,
        )
        self.mlp = LlamaMLP(
            hidden_size=self.hidden_size,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
        )
141
142
        self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
Woosuk Kwon's avatar
Woosuk Kwon committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

    def forward(
        self,
        positions: torch.LongTensor,
        hidden_states: torch.Tensor,
        kv_cache: KVCache,
        input_metadata: InputMetadata,
        cache_event: Optional[torch.cuda.Event],
    ) -> torch.Tensor:
        # Self Attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states = self.self_attn(
            positions=positions,
            hidden_states=hidden_states,
            kv_cache=kv_cache,
            input_metadata=input_metadata,
            cache_event=cache_event,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states
        return hidden_states


class LlamaModel(nn.Module):

    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.config = config
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = VocabParallelEmbedding(config.vocab_size, config.hidden_size,
                                                   perform_initialization=False)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
183
        self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
Woosuk Kwon's avatar
Woosuk Kwon committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)
        for i in range(len(self.layers)):
            if cache_events is None:
                cache_event = None
            else:
                cache_event = cache_events[i]
            layer = self.layers[i]
            hidden_states = layer(
                positions,
                hidden_states,
                kv_caches[i],
                input_metadata,
                cache_event,
            )
        hidden_states = self.norm(hidden_states)
        return hidden_states


class LlamaForCausalLM(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.model = LlamaModel(config)
        self.lm_head = ColumnParallelLinear(config.hidden_size,
                                            config.vocab_size,
                                            bias=False,
                                            gather_output=False,
                                            perform_initialization=False)
Woosuk Kwon's avatar
Woosuk Kwon committed
221
        self.sampler = Sampler(config.vocab_size)
Woosuk Kwon's avatar
Woosuk Kwon committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

    def forward(
        self,
        input_ids: torch.LongTensor,
        positions: torch.LongTensor,
        kv_caches: List[KVCache],
        input_metadata: InputMetadata,
        cache_events: Optional[List[torch.cuda.Event]],
    ) -> Dict[int, SequenceOutputs]:
        hidden_states = self.model(
            input_ids, positions, kv_caches, input_metadata, cache_events)
        next_tokens = self.sampler(
            self.lm_head.weight, hidden_states, input_metadata)
        return next_tokens

    _column_parallel_weights = ["embed_tokens.weight", "lm_head.weight",
238
                                "qkv_proj.weight", "gate_proj.weight",
Woosuk Kwon's avatar
Woosuk Kwon committed
239
240
241
                                "up_proj.weight"]
    _row_parallel_weights = ["o_proj.weight", "down_proj.weight"]

242
243
244
    def load_weights(self, model_name_or_path: str,
                     cache_dir: Optional[str] = None,
                     use_np_cache: bool = False):
Woosuk Kwon's avatar
Woosuk Kwon committed
245
246
        tensor_model_parallel_rank = get_tensor_model_parallel_rank()
        state_dict = self.state_dict()
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291

        for name, loaded_weight in hf_model_weights_iterator(
            model_name_or_path, cache_dir, use_np_cache):
            if "rotary_emb.inv_freq" in name:
                continue

            is_attention_weight = False
            for stride_id, att_weight_name in enumerate(["q_proj", "k_proj", "v_proj"]):
                if att_weight_name not in name:
                    continue
                param = state_dict[name.replace(att_weight_name, "qkv_proj")]
                shard_size = param.shape[0] // 3
                loaded_weight = loaded_weight[
                    shard_size * tensor_model_parallel_rank
                    :shard_size * (tensor_model_parallel_rank + 1)]
                param_slice = param.data[shard_size * stride_id
                                         :shard_size * (stride_id + 1)]
                assert param_slice.shape == loaded_weight.shape
                param_slice.copy_(loaded_weight)
                is_attention_weight = True
                break
            if is_attention_weight:
                continue

            is_gate_up_weight = False
            for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
                if weight_name not in name:
                    continue
                param = state_dict[name.replace(weight_name, "gate_up_proj")]
                shard_size = param.shape[0] // 2
                loaded_weight = loaded_weight[
                    shard_size * tensor_model_parallel_rank
                    :shard_size * (tensor_model_parallel_rank + 1)]
                param_slice = param.data[shard_size * stride_id
                                         :shard_size * (stride_id + 1)]
                assert param_slice.shape == loaded_weight.shape
                param_slice.copy_(loaded_weight)
                is_gate_up_weight = True
                break
            if is_gate_up_weight:
                continue

            param = state_dict[name]
            load_tensor_parallel_weights(param, loaded_weight, name,
                                         self._column_parallel_weights,
292
293
                                         self._row_parallel_weights,
                                         tensor_model_parallel_rank)