llm_engine.py 29.9 KB
Newer Older
Fang li's avatar
Fang li committed
1
import copy
Antoni Baum's avatar
Antoni Baum committed
2
import time
3
from functools import partial
Antoni Baum's avatar
Antoni Baum committed
4
from typing import TYPE_CHECKING, Any, Iterable, List, Optional, Tuple, Union
5

Woosuk Kwon's avatar
Woosuk Kwon committed
6
7
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
                         SchedulerConfig)
Antoni Baum's avatar
Antoni Baum committed
8
from vllm.core.scheduler import Scheduler, SchedulerOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
9
from vllm.engine.arg_utils import EngineArgs
Antoni Baum's avatar
Antoni Baum committed
10
from vllm.engine.ray_utils import RayWorker, initialize_cluster, ray
Woosuk Kwon's avatar
Woosuk Kwon committed
11
12
13
from vllm.logger import init_logger
from vllm.outputs import RequestOutput
from vllm.sampling_params import SamplingParams
14
15
from vllm.sequence import (SamplerOutput, Sequence, SequenceGroup,
                           SequenceGroupMetadata, SequenceOutputs,
Antoni Baum's avatar
Antoni Baum committed
16
                           SequenceStatus)
17
18
from vllm.transformers_utils.tokenizer import (detokenize_incrementally,
                                               get_tokenizer)
Woosuk Kwon's avatar
Woosuk Kwon committed
19
from vllm.utils import Counter
20
21
22
23
24
25
26

if ray:
    from ray.air.util.torch_dist import init_torch_dist_process_group
    from ray.util.scheduling_strategies import PlacementGroupSchedulingStrategy

if TYPE_CHECKING:
    from ray.util.placement_group import PlacementGroup
27
28
29

logger = init_logger(__name__)

Woosuk Kwon's avatar
Woosuk Kwon committed
30
31
_LOGGING_INTERVAL_SEC = 5

32

33
class LLMEngine:
Zhuohan Li's avatar
Zhuohan Li committed
34
    """An LLM engine that receives requests and generates texts.
35

Woosuk Kwon's avatar
Woosuk Kwon committed
36
    This is the main class for the vLLM engine. It receives requests
37
38
39
40
41
42
43
    from clients and generates texts from the LLM. It includes a tokenizer, a
    language model (possibly distributed across multiple GPUs), and GPU memory
    space allocated for intermediate states (aka KV cache). This class utilizes
    iteration-level scheduling and efficient memory management to maximize the
    serving throughput.

    The `LLM` class wraps this class for offline batched inference and the
44
    `AsyncLLMEngine` class wraps this class for online serving.
45

Zhuohan Li's avatar
Zhuohan Li committed
46
47
    NOTE: The config arguments are derived from the `EngineArgs` class. For the
    comprehensive list of arguments, see `EngineArgs`.
48
49
50
51
52
53
54
55
56

    Args:
        model_config: The configuration related to the LLM model.
        cache_config: The configuration related to the KV cache memory
            management.
        parallel_config: The configuration related to distributed execution.
        scheduler_config: The configuration related to the request scheduler.
        distributed_init_method: The initialization method for distributed
            execution. See `torch.distributed.init_process_group` for details.
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
57
58
        placement_group: Ray placement group for distributed execution.
            Required for distributed execution.
59
60
        log_stats: Whether to log statistics.
    """
61
62
63
64
65
66
67
68

    def __init__(
        self,
        model_config: ModelConfig,
        cache_config: CacheConfig,
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        distributed_init_method: str,
69
        placement_group: Optional["PlacementGroup"],
70
        log_stats: bool,
71
72
    ) -> None:
        logger.info(
Zhuohan Li's avatar
Zhuohan Li committed
73
            "Initializing an LLM engine with config: "
74
            f"model={model_config.model!r}, "
75
            f"tokenizer={model_config.tokenizer!r}, "
76
            f"tokenizer_mode={model_config.tokenizer_mode}, "
Jasmond L's avatar
Jasmond L committed
77
            f"revision={model_config.revision}, "
78
            f"trust_remote_code={model_config.trust_remote_code}, "
79
80
            f"dtype={model_config.dtype}, "
            f"download_dir={model_config.download_dir!r}, "
81
            f"load_format={model_config.load_format}, "
82
            f"tensor_parallel_size={parallel_config.tensor_parallel_size}, "
83
            f"quantization={model_config.quantization}, "
84
            f"seed={model_config.seed})")
85
86
87
88
89
90
91
92
93
        # TODO(woosuk): Print more configs in debug mode.

        self.model_config = model_config
        self.cache_config = cache_config
        self.parallel_config = parallel_config
        self.scheduler_config = scheduler_config
        self.log_stats = log_stats
        self._verify_args()

94
        self.tokenizer = get_tokenizer(
95
96
            model_config.tokenizer,
            tokenizer_mode=model_config.tokenizer_mode,
Jasmond L's avatar
Jasmond L committed
97
98
            trust_remote_code=model_config.trust_remote_code,
            revision=model_config.revision)
99
100
101
        self.seq_counter = Counter()

        # Create the parallel GPU workers.
102
103
104
105
106
        if self.parallel_config.worker_use_ray:
            self._init_workers_ray(placement_group)
        else:
            self._init_workers(distributed_init_method)

107
108
109
110
        # Profile the memory usage and initialize the cache.
        self._init_cache()

        # Create the scheduler.
Woosuk Kwon's avatar
Woosuk Kwon committed
111
112
113
114
115
116
117
118
        self.scheduler = Scheduler(scheduler_config, cache_config)

        # Logging.
        self.last_logging_time = 0.0
        # List of (timestamp, num_tokens)
        self.num_prompt_tokens: List[Tuple[float, int]] = []
        # List of (timestamp, num_tokens)
        self.num_generation_tokens: List[Tuple[float, int]] = []
119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    def _init_workers(self, distributed_init_method: str):
        # Lazy import the Worker to avoid importing torch.cuda/xformers
        # before CUDA_VISIBLE_DEVICES is set in the Worker
        from vllm.worker.worker import Worker  # pylint: disable=import-outside-toplevel

        assert self.parallel_config.world_size == 1, (
            "Ray is required if parallel_config.world_size > 1.")

        self.workers: List[Worker] = []
        worker = Worker(
            self.model_config,
            self.parallel_config,
            self.scheduler_config,
            0,
            distributed_init_method,
        )
        self.workers.append(worker)
        self._run_workers(
            "init_model",
            get_all_outputs=True,
        )

Antoni Baum's avatar
Antoni Baum committed
142
143
    def _init_workers_ray(self, placement_group: "PlacementGroup",
                          **ray_remote_kwargs):
144
145
146
147
148
149
150
151
152
153
154
155
156
157
        # Lazy import the Worker to avoid importing torch.cuda/xformers
        # before CUDA_VISIBLE_DEVICES is set in the Worker
        from vllm.worker.worker import Worker  # pylint: disable=import-outside-toplevel

        self.workers: List[Worker] = []
        for bundle in placement_group.bundle_specs:
            if not bundle.get("GPU", 0):
                continue
            worker = ray.remote(
                num_cpus=0,
                num_gpus=1,
                scheduling_strategy=PlacementGroupSchedulingStrategy(
                    placement_group=placement_group,
                    placement_group_capture_child_tasks=True),
Antoni Baum's avatar
Antoni Baum committed
158
                **ray_remote_kwargs,
159
            )(RayWorker).remote(self.model_config.trust_remote_code)
160
161
162
163
            self.workers.append(worker)

        # Initialize torch distributed process group for the workers.
        init_torch_dist_process_group(self.workers, backend="nccl")
Fang li's avatar
Fang li committed
164
165
166
        model_config = copy.deepcopy(self.model_config)
        parallel_config = copy.deepcopy(self.parallel_config)
        scheduler_config = copy.deepcopy(self.scheduler_config)
167
168
169
        self._run_workers("init_worker",
                          get_all_outputs=True,
                          worker_init_fn=lambda: Worker(
Fang li's avatar
Fang li committed
170
171
172
                              model_config,
                              parallel_config,
                              scheduler_config,
173
174
175
176
177
178
179
180
                              None,
                              None,
                          ))
        self._run_workers(
            "init_model",
            get_all_outputs=True,
        )

181
182
    def _verify_args(self) -> None:
        self.model_config.verify_with_parallel_config(self.parallel_config)
183
        self.cache_config.verify_with_parallel_config(self.parallel_config)
184
185

    def _init_cache(self) -> None:
186
        """Profiles the memory usage and initializes the KV cache."""
187
188
189
190
191
192
        # Get the maximum number of blocks that can be allocated on GPU and CPU.
        num_blocks = self._run_workers(
            "profile_num_available_blocks",
            get_all_outputs=True,
            block_size=self.cache_config.block_size,
            gpu_memory_utilization=self.cache_config.gpu_memory_utilization,
193
            cpu_swap_space=self.cache_config.swap_space_bytes,
194
195
196
197
198
199
200
201
        )

        # Since we use a shared centralized controller, we take the minimum
        # number of blocks across all workers to make sure all the memory
        # operators can be applied to all workers.
        num_gpu_blocks = min(b[0] for b in num_blocks)
        num_cpu_blocks = min(b[1] for b in num_blocks)
        # FIXME(woosuk): Change to debug log.
202
203
        logger.info(f"# GPU blocks: {num_gpu_blocks}, "
                    f"# CPU blocks: {num_cpu_blocks}")
204

205
        if num_gpu_blocks <= 0:
206
207
208
209
            raise ValueError("No available memory for the cache blocks. "
                             "Try increasing `gpu_memory_utilization` when "
                             "initializing the engine.")

210
211
212
213
214
215
        self.cache_config.num_gpu_blocks = num_gpu_blocks
        self.cache_config.num_cpu_blocks = num_cpu_blocks

        # Initialize the cache.
        self._run_workers("init_cache_engine", cache_config=self.cache_config)

216
    @classmethod
Zhuohan Li's avatar
Zhuohan Li committed
217
218
219
220
221
    def from_engine_args(cls, engine_args: EngineArgs) -> "LLMEngine":
        """Creates an LLM engine from the engine arguments."""
        # Create the engine configs.
        engine_configs = engine_args.create_engine_configs()
        parallel_config = engine_configs[2]
222
        # Initialize the cluster.
223
224
        distributed_init_method, placement_group = initialize_cluster(
            parallel_config)
Zhuohan Li's avatar
Zhuohan Li committed
225
        # Create the LLM engine.
226
227
        engine = cls(*engine_configs,
                     distributed_init_method,
228
                     placement_group,
Zhuohan Li's avatar
Zhuohan Li committed
229
230
                     log_stats=not engine_args.disable_log_stats)
        return engine
231

232
233
234
    def add_request(
        self,
        request_id: str,
Woosuk Kwon's avatar
Woosuk Kwon committed
235
        prompt: Optional[str],
236
237
238
239
        sampling_params: SamplingParams,
        prompt_token_ids: Optional[List[int]] = None,
        arrival_time: Optional[float] = None,
    ) -> None:
Zhuohan Li's avatar
Zhuohan Li committed
240
        """Add a request to the engine's request pool.
241
242

        The request is added to the request pool and will be processed by the
Zhuohan Li's avatar
Zhuohan Li committed
243
        scheduler as `engine.step()` is called. The exact scheduling policy is
244
245
246
247
248
249
250
251
252
253
254
255
        determined by the scheduler.

        Args:
            request_id: The unique ID of the request.
            prompt: The prompt string. Can be None if prompt_token_ids is
                provided.
            sampling_params: The sampling parameters for text generation.
            prompt_token_ids: The token IDs of the prompt. If None, we
                use the tokenizer to convert the prompts to token IDs.
            arrival_time: The arrival time of the request. If None, we use
                the current time.
        """
256
257
258
        if arrival_time is None:
            arrival_time = time.time()
        if prompt_token_ids is None:
Woosuk Kwon's avatar
Woosuk Kwon committed
259
            assert prompt is not None
260
261
262
263
            prompt_token_ids = self.tokenizer.encode(prompt)

        # Create the sequences.
        block_size = self.cache_config.block_size
264
265
        seq_id = next(self.seq_counter)
        seq = Sequence(seq_id, prompt, prompt_token_ids, block_size)
266
267

        # Create the sequence group.
268
        seq_group = SequenceGroup(request_id, [seq], sampling_params,
269
270
271
272
273
                                  arrival_time)

        # Add the sequence group to the scheduler.
        self.scheduler.add_seq_group(seq_group)

Antoni Baum's avatar
Antoni Baum committed
274
275
    def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
        """Aborts a request(s) with the given ID.
276
277

        Args:
Antoni Baum's avatar
Antoni Baum committed
278
            request_id: The ID(s) of the request to abort.
279
        """
280
281
        self.scheduler.abort_seq_group(request_id)

282
283
284
285
    def get_model_config(self) -> ModelConfig:
        """Gets the model configuration."""
        return self.model_config

286
    def get_num_unfinished_requests(self) -> int:
287
        """Gets the number of unfinished requests."""
288
289
        return self.scheduler.get_num_unfinished_seq_groups()

290
    def has_unfinished_requests(self) -> bool:
291
        """Returns True if there are unfinished requests."""
292
293
        return self.scheduler.has_unfinished_seqs()

Antoni Baum's avatar
Antoni Baum committed
294
295
296
    def _schedule(
        self
    ) -> Tuple[List[SequenceGroupMetadata], SchedulerOutputs,
297
               List[RequestOutput]]:
Woosuk Kwon's avatar
Woosuk Kwon committed
298
        seq_group_metadata_list, scheduler_outputs = self.scheduler.schedule()
299
300
301
302
        return seq_group_metadata_list, scheduler_outputs, [
            RequestOutput.from_seq_group(seq_group)
            for seq_group in scheduler_outputs.ignored_seq_groups
        ]
303

304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    def _check_beam_search_early_stopping(
        self,
        early_stopping: Union[bool, str],
        sampling_params: SamplingParams,
        best_running_seq: Sequence,
        current_worst_seq: Sequence,
    ) -> bool:
        assert sampling_params.use_beam_search
        length_penalty = sampling_params.length_penalty
        if early_stopping is True:
            return True

        current_worst_score = (current_worst_seq.get_beam_search_score(
            length_penalty=length_penalty,
            eos_token_id=self.tokenizer.eos_token_id))
        if early_stopping is False:
            highest_attainable_score = (best_running_seq.get_beam_search_score(
                length_penalty=length_penalty,
                eos_token_id=self.tokenizer.eos_token_id))
        else:
            assert early_stopping == "never"
            if length_penalty > 0.0:
                # If length_penalty > 0.0, beam search will prefer longer
                # sequences. The highest attainable score calculation is
                # based on the longest possible sequence length in this case.
                max_possible_length = max(
                    best_running_seq.get_prompt_len() +
                    sampling_params.max_tokens,
                    self.scheduler_config.max_model_len)
                highest_attainable_score = (
                    best_running_seq.get_beam_search_score(
                        length_penalty=length_penalty,
                        eos_token_id=self.tokenizer.eos_token_id,
                        seq_len=max_possible_length))
            else:
                # Otherwise, beam search will prefer shorter sequences. The
                # highest attainable score calculation is based on the current
                # sequence length.
                highest_attainable_score = (
                    best_running_seq.get_beam_search_score(
                        length_penalty=length_penalty,
                        eos_token_id=self.tokenizer.eos_token_id))
        return current_worst_score >= highest_attainable_score

    def _process_sequence_group_samples(
            self, seq_group: SequenceGroup,
            samples: List[SequenceOutputs]) -> None:
        parent_seqs = seq_group.get_seqs(status=SequenceStatus.RUNNING)
        existing_finished_seqs = seq_group.get_finished_seqs()
        parent_child_dict = {
            parent_seq.seq_id: []
            for parent_seq in parent_seqs
        }
        for sample in samples:
            parent_child_dict[sample.parent_seq_id].append(sample)
        # List of (child, parent)
        child_seqs: List[Tuple[Sequence, Sequence]] = []

        # Process the child samples for each parent sequence
        for parent in parent_seqs:
            child_samples: List[SequenceOutputs] = parent_child_dict[
                parent.seq_id]
            if len(child_samples) == 0:
                # This parent sequence has no children samples. Remove
                # the parent sequence from the sequence group since it will
                # not be used in the future iterations.
                parent.status = SequenceStatus.FINISHED_ABORTED
                seq_group.remove(parent.seq_id)
                self.scheduler.free_seq(parent)
                continue
            # Fork the parent sequence if there are multiple child samples.
            for child_sample in child_samples[:-1]:
                new_child_seq_id = next(self.seq_counter)
                child = parent.fork(new_child_seq_id)
                child.append_token_id(child_sample.output_token,
                                      child_sample.logprobs)
                child_seqs.append((child, parent))
            # Continue the parent sequence for the last child sample.
            # We reuse the parent sequence here to reduce redundant memory
            # copies, especially when using non-beam search sampling methods.
            last_child_sample = child_samples[-1]
            parent.append_token_id(last_child_sample.output_token,
                                   last_child_sample.logprobs)
            child_seqs.append((parent, parent))

        for seq, _ in child_seqs:
            self._decode_sequence(seq)
            self._check_stop(seq, seq_group.sampling_params)

        # Non-beam search case
        if not seq_group.sampling_params.use_beam_search:
            # For newly created child sequences, add them to the sequence group
            # and fork them in block manager if they are not finished.
            for seq, parent in child_seqs:
                if seq is not parent:
                    seq_group.add(seq)
                    if not seq.is_finished():
                        self.scheduler.fork_seq(parent, seq)

            # Free the finished and selected parent sequences' memory in block
            # manager. Keep them in the sequence group as candidate output.
            # NOTE: we need to fork the new sequences before freeing the
            # old sequences.
            for seq, parent in child_seqs:
                if seq is parent and seq.is_finished():
                    self.scheduler.free_seq(seq)
            return

        # Beam search case
        # Select the child sequences to keep in the sequence group.
        selected_child_seqs = []
        unselected_child_seqs = []
        beam_width = seq_group.sampling_params.best_of
        length_penalty = seq_group.sampling_params.length_penalty

        # Select the newly finished sequences with the highest scores
        # to replace existing finished sequences.
        # Tuple of (seq, parent, is_new)
        existing_finished_seqs = [(seq, None, False)
                                  for seq in existing_finished_seqs]
        new_finished_seqs = [(seq, parent, True) for seq, parent in child_seqs
                             if seq.is_finished()]
        all_finished_seqs = existing_finished_seqs + new_finished_seqs
        # Sort the finished sequences by their scores.
        all_finished_seqs.sort(key=lambda x: x[0].get_beam_search_score(
            length_penalty=length_penalty,
            eos_token_id=self.tokenizer.eos_token_id),
                               reverse=True)
        for seq, parent, is_new in all_finished_seqs[:beam_width]:
            if is_new:
                # A newly generated child sequence finishes and has a high
                # score, so we will add it into the sequence group.
                selected_child_seqs.append((seq, parent))
        for seq, parent, is_new in all_finished_seqs[beam_width:]:
            if is_new:
                # A newly generated child sequence finishes but has a low
                # score, so we will not add it into the sequence group.
                # Additionally, if this sequence is a continuation of a
                # parent sequence, we will need remove the parent sequence
                # from the sequence group.
                unselected_child_seqs.append((seq, parent))
            else:
                # An existing finished sequence has a low score, so we will
                # remove it from the sequence group.
                seq_group.remove(seq.seq_id)

        # select the top beam_width sequences from the running
        # sequences for the next iteration to continue the beam
        # search.
        running_child_seqs = [(seq, parent) for seq, parent in child_seqs
                              if not seq.is_finished()]
        # Sort the running sequences by their scores.
        running_child_seqs.sort(key=lambda x: x[0].get_beam_search_score(
            length_penalty=length_penalty,
            eos_token_id=self.tokenizer.eos_token_id),
                                reverse=True)

        # Check if we can stop the beam search.
        if len(running_child_seqs) == 0:
            # No running sequences, stop the beam search.
            stop_beam_search = True
        elif len(all_finished_seqs) < beam_width:
            # Not enough finished sequences, continue the beam search.
            stop_beam_search = False
        else:
            # Check the early stopping criteria
            best_running_seq = running_child_seqs[0][0]
            current_worst_seq = all_finished_seqs[beam_width - 1][0]
            stop_beam_search = self._check_beam_search_early_stopping(
                seq_group.sampling_params.early_stopping,
                seq_group.sampling_params, best_running_seq, current_worst_seq)

        if stop_beam_search:
            # Stop the beam search and remove all the running sequences from
            # the sequence group.
            unselected_child_seqs.extend(running_child_seqs)
        else:
            # Continue the beam search and select the top beam_width sequences
            # to continue the beam search.
            selected_child_seqs.extend(running_child_seqs[:beam_width])
            # The remaining running sequences will not be used in the next
            # iteration. Again, if these sequences are continuations of
            # parent sequences, we will need to remove the parent sequences
            # from the sequence group.
            unselected_child_seqs.extend(running_child_seqs[beam_width:])

        # For newly created child sequences, add them to the sequence group
        # and fork them in block manager if they are not finished.
        for seq, parent in selected_child_seqs:
            if seq is not parent:
                seq_group.add(seq)
                if not seq.is_finished():
                    self.scheduler.fork_seq(parent, seq)

        # Free the finished and selected parent sequences' memory in block
        # manager. Keep them in the sequence group as candidate output.
        for seq, parent in selected_child_seqs:
            if seq is parent and seq.is_finished():
                self.scheduler.free_seq(seq)

        # Remove the unselected parent sequences from the sequence group and
        # free their memory in block manager.
        for seq, parent in unselected_child_seqs:
            if seq is parent:
                # Remove the parent sequence if it is not selected for next
                # iteration
                seq_group.remove(seq.seq_id)
                self.scheduler.free_seq(seq)

    def _process_model_outputs(
            self, output: SamplerOutput,
Antoni Baum's avatar
Antoni Baum committed
515
            scheduler_outputs: SchedulerOutputs) -> List[RequestOutput]:
516
517
518
519
        # Update the scheduled sequence groups with the model outputs.
        scheduled_seq_groups = scheduler_outputs.scheduled_seq_groups
        for seq_group, samples in zip(scheduled_seq_groups, output):
            self._process_sequence_group_samples(seq_group, samples)
520
521
522

        # Free the finished sequence groups.
        self.scheduler.free_finished_seq_groups()
523
524
525

        # Create the outputs.
        request_outputs: List[RequestOutput] = []
526
527
        for seq_group in (scheduled_seq_groups +
                          scheduler_outputs.ignored_seq_groups):
528
            request_output = RequestOutput.from_seq_group(seq_group)
529
            request_outputs.append(request_output)
Woosuk Kwon's avatar
Woosuk Kwon committed
530
531
532
533
534

        if self.log_stats:
            # Log the system stats.
            self._log_system_stats(scheduler_outputs.prompt_run,
                                   scheduler_outputs.num_batched_tokens)
535
536
        return request_outputs

Antoni Baum's avatar
Antoni Baum committed
537
538
539
540
541
542
543
544
545
    def step(self) -> List[RequestOutput]:
        """Performs one decoding iteration and returns newly generated results.

        This function performs one decoding iteration of the engine. It first
        schedules the sequences to be executed in the next iteration and the
        token blocks to be swapped in/out/copy. Then, it executes the model
        and updates the scheduler with the model outputs. Finally, it decodes
        the sequences and returns the newly generated results.
        """
546
547
548
        seq_group_metadata_list, scheduler_outputs, ignored = self._schedule()
        if scheduler_outputs.is_empty():
            return ignored
Antoni Baum's avatar
Antoni Baum committed
549
550
551
552
553
554
555
556
557
558

        # Execute the model.
        output = self._run_workers(
            "execute_model",
            seq_group_metadata_list=seq_group_metadata_list,
            blocks_to_swap_in=scheduler_outputs.blocks_to_swap_in,
            blocks_to_swap_out=scheduler_outputs.blocks_to_swap_out,
            blocks_to_copy=scheduler_outputs.blocks_to_copy,
        )

559
        return self._process_model_outputs(output, scheduler_outputs) + ignored
Antoni Baum's avatar
Antoni Baum committed
560

Woosuk Kwon's avatar
Woosuk Kwon committed
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    def _log_system_stats(
        self,
        prompt_run: bool,
        num_batched_tokens: int,
    ) -> None:
        now = time.time()
        # Log the number of batched input tokens.
        if prompt_run:
            self.num_prompt_tokens.append((now, num_batched_tokens))
        else:
            self.num_generation_tokens.append((now, num_batched_tokens))

        elapsed_time = now - self.last_logging_time
        if elapsed_time < _LOGGING_INTERVAL_SEC:
            return

        # Discard the old stats.
        self.num_prompt_tokens = [(t, n) for t, n in self.num_prompt_tokens
                                  if now - t < _LOGGING_INTERVAL_SEC]
        self.num_generation_tokens = [(t, n)
                                      for t, n in self.num_generation_tokens
                                      if now - t < _LOGGING_INTERVAL_SEC]

        if len(self.num_prompt_tokens) > 1:
            total_num_tokens = sum(n for _, n in self.num_prompt_tokens[:-1])
            window = now - self.num_prompt_tokens[0][0]
            avg_prompt_throughput = total_num_tokens / window
        else:
            avg_prompt_throughput = 0.0
        if len(self.num_generation_tokens) > 1:
            total_num_tokens = sum(n
                                   for _, n in self.num_generation_tokens[:-1])
            window = now - self.num_generation_tokens[0][0]
            avg_generation_throughput = total_num_tokens / window
        else:
            avg_generation_throughput = 0.0

        total_num_gpu_blocks = self.cache_config.num_gpu_blocks
        num_free_gpu_blocks = (
            self.scheduler.block_manager.get_num_free_gpu_blocks())
        num_used_gpu_blocks = total_num_gpu_blocks - num_free_gpu_blocks
        gpu_cache_usage = num_used_gpu_blocks / total_num_gpu_blocks

        total_num_cpu_blocks = self.cache_config.num_cpu_blocks
        if total_num_cpu_blocks > 0:
            num_free_cpu_blocks = (
                self.scheduler.block_manager.get_num_free_cpu_blocks())
            num_used_cpu_blocks = total_num_cpu_blocks - num_free_cpu_blocks
            cpu_cache_usage = num_used_cpu_blocks / total_num_cpu_blocks
        else:
            cpu_cache_usage = 0.0

        logger.info("Avg prompt throughput: "
                    f"{avg_prompt_throughput:.1f} tokens/s, "
                    "Avg generation throughput: "
                    f"{avg_generation_throughput:.1f} tokens/s, "
                    f"Running: {len(self.scheduler.running)} reqs, "
                    f"Swapped: {len(self.scheduler.swapped)} reqs, "
                    f"Pending: {len(self.scheduler.waiting)} reqs, "
                    f"GPU KV cache usage: {gpu_cache_usage * 100:.1f}%, "
                    f"CPU KV cache usage: {cpu_cache_usage * 100:.1f}%")
        self.last_logging_time = now

624
625
    def _decode_sequence(self, seq: Sequence) -> None:
        """Decodes the new token for a sequence."""
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        (new_tokens, new_output_text, prefix_offset,
         read_offset) = detokenize_incrementally(
             self.tokenizer,
             all_input_ids=seq.get_token_ids(),
             prev_tokens=seq.tokens,
             prefix_offset=seq.prefix_offset,
             read_offset=seq.read_offset,
             skip_special_tokens=True,
         )
        if seq.tokens is None:
            seq.tokens = new_tokens
        else:
            seq.tokens.extend(new_tokens)
        seq.prefix_offset = prefix_offset
        seq.read_offset = read_offset
        seq.output_text += new_output_text
642
643
644

    def _check_stop(self, seq: Sequence,
                    sampling_params: SamplingParams) -> None:
645
        """Stop the finished sequences."""
646
647
648
649
650
651
652
        for stop_str in sampling_params.stop:
            if seq.output_text.endswith(stop_str):
                # Truncate the output text so that the stop string is
                # not included in the output.
                seq.output_text = seq.output_text[:-len(stop_str)]
                seq.status = SequenceStatus.FINISHED_STOPPED
                return
653
654
655
        if seq.get_last_token_id() in sampling_params.stop_token_ids:
            seq.status = SequenceStatus.FINISHED_STOPPED
            return
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671

        # Check if the sequence has reached max_model_len.
        if seq.get_len() > self.scheduler_config.max_model_len:
            seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
            return

        # Check if the sequence has reached max_tokens.
        if seq.get_output_len() == sampling_params.max_tokens:
            seq.status = SequenceStatus.FINISHED_LENGTH_CAPPED
            return

        # Check if the sequence has generated the EOS token.
        if ((not sampling_params.ignore_eos)
                and seq.get_last_token_id() == self.tokenizer.eos_token_id):
            seq.status = SequenceStatus.FINISHED_STOPPED
            return
672

673
674
675
676
    def _run_workers(
        self,
        method: str,
        *args,
677
        get_all_outputs: bool = False,
678
679
        **kwargs,
    ) -> Any:
680
        """Runs the given method on all workers."""
681
682
        all_outputs = []
        for worker in self.workers:
683
            if self.parallel_config.worker_use_ray:
684
685
686
                executor = partial(worker.execute_method.remote, method)
            else:
                executor = getattr(worker, method)
Zhuohan Li's avatar
Zhuohan Li committed
687

688
689
            output = executor(*args, **kwargs)
            all_outputs.append(output)
Zhuohan Li's avatar
Zhuohan Li committed
690

691
        if self.parallel_config.worker_use_ray:
692
693
694
695
696
697
698
699
700
701
            all_outputs = ray.get(all_outputs)

        if get_all_outputs:
            return all_outputs

        # Make sure all workers have the same results.
        output = all_outputs[0]
        for other_output in all_outputs[1:]:
            assert output == other_output
        return output