benchmark_serving.py 9.17 KB
Newer Older
1
2
3
"""Benchmark online serving throughput.

On the server side, run one of the following commands:
Woosuk Kwon's avatar
Woosuk Kwon committed
4
5
    (vLLM backend)
    python -m vllm.entrypoints.api_server \
6
7
        --model <your_model> --swap-space 16 \
        --disable-log-requests
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

    (TGI backend)
    ./launch_hf_server.sh <your_model>

On the client side, run:
    python benchmarks/benchmark_serving.py \
        --backend <backend> \
        --tokenizer <your_model> --dataset <target_dataset> \
        --request-rate <request_rate>
"""
import argparse
import asyncio
import json
import random
import time
from typing import AsyncGenerator, List, Tuple

import aiohttp
import numpy as np
27
from tqdm.asyncio import tqdm
28
29
from transformers import PreTrainedTokenizerBase
from vllm.transformers_utils.tokenizer import get_tokenizer
30
31
32
33
34
35
36
37
38
39
40
41
42
43

# (prompt len, output len, latency)
REQUEST_LATENCY: List[Tuple[int, int, float]] = []


def sample_requests(
    dataset_path: str,
    num_requests: int,
    tokenizer: PreTrainedTokenizerBase,
) -> List[Tuple[str, int, int]]:
    # Load the dataset.
    with open(dataset_path) as f:
        dataset = json.load(f)
    # Filter out the conversations with less than 2 turns.
44
    dataset = [data for data in dataset if len(data["conversations"]) >= 2]
45
    # Only keep the first two turns of each conversation.
46
47
    dataset = [(data["conversations"][0]["value"],
                data["conversations"][1]["value"]) for data in dataset]
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

    # Tokenize the prompts and completions.
    prompts = [prompt for prompt, _ in dataset]
    prompt_token_ids = tokenizer(prompts).input_ids
    completions = [completion for _, completion in dataset]
    completion_token_ids = tokenizer(completions).input_ids
    tokenized_dataset = []
    for i in range(len(dataset)):
        output_len = len(completion_token_ids[i])
        tokenized_dataset.append((prompts[i], prompt_token_ids[i], output_len))

    # Filter out too long sequences.
    filtered_dataset: List[Tuple[str, int, int]] = []
    for prompt, prompt_token_ids, output_len in tokenized_dataset:
        prompt_len = len(prompt_token_ids)
        if prompt_len < 4 or output_len < 4:
            # Prune too short sequences.
            # This is because TGI causes errors when the input or output length
            # is too short.
            continue
        if prompt_len > 1024 or prompt_len + output_len > 2048:
            # Prune too long sequences.
            continue
        filtered_dataset.append((prompt, prompt_len, output_len))

    # Sample the requests.
    sampled_requests = random.sample(filtered_dataset, num_requests)
    return sampled_requests


async def get_request(
    input_requests: List[Tuple[str, int, int]],
    request_rate: float,
) -> AsyncGenerator[Tuple[str, int, int], None]:
    input_requests = iter(input_requests)
    for request in input_requests:
        yield request

        if request_rate == float("inf"):
            # If the request rate is infinity, then we don't need to wait.
            continue
        # Sample the request interval from the exponential distribution.
        interval = np.random.exponential(1.0 / request_rate)
        # The next request will be sent after the interval.
        await asyncio.sleep(interval)


95
96
97
async def send_request(backend: str, model: str, api_url: str, prompt: str,
                       prompt_len: int, output_len: int, best_of: int,
                       use_beam_search: bool, pbar: tqdm) -> None:
98
    request_start_time = time.perf_counter()
99
100

    headers = {"User-Agent": "Benchmark Client"}
Woosuk Kwon's avatar
Woosuk Kwon committed
101
    if backend == "vllm":
102
103
104
105
106
107
108
109
110
111
112
        pload = {
            "prompt": prompt,
            "n": 1,
            "best_of": best_of,
            "use_beam_search": use_beam_search,
            "temperature": 0.0 if use_beam_search else 1.0,
            "top_p": 1.0,
            "max_tokens": output_len,
            "ignore_eos": True,
            "stream": False,
        }
113
114
        if model is not None:
            pload["model"] = model
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    elif backend == "tgi":
        assert not use_beam_search
        params = {
            "best_of": best_of,
            "max_new_tokens": output_len,
            "do_sample": True,
        }
        pload = {
            "inputs": prompt,
            "parameters": params,
        }
    else:
        raise ValueError(f"Unknown backend: {backend}")

    timeout = aiohttp.ClientTimeout(total=3 * 3600)
    async with aiohttp.ClientSession(timeout=timeout) as session:
        while True:
132
133
            async with session.post(api_url, headers=headers,
                                    json=pload) as response:
134
135
136
137
138
139
140
141
142
143
                chunks = []
                async for chunk, _ in response.content.iter_chunks():
                    chunks.append(chunk)
            output = b"".join(chunks).decode("utf-8")
            output = json.loads(output)

            # Re-send the request if it failed.
            if "error" not in output:
                break

144
    request_end_time = time.perf_counter()
145
146
    request_latency = request_end_time - request_start_time
    REQUEST_LATENCY.append((prompt_len, output_len, request_latency))
147
148
    pbar.update(1)

149
150
151

async def benchmark(
    backend: str,
152
    model: str,
153
154
155
156
157
158
159
    api_url: str,
    input_requests: List[Tuple[str, int, int]],
    best_of: int,
    use_beam_search: bool,
    request_rate: float,
) -> None:
    tasks: List[asyncio.Task] = []
160
    pbar = tqdm(total=len(input_requests))
161
162
    async for request in get_request(input_requests, request_rate):
        prompt, prompt_len, output_len = request
163
164
        task = asyncio.create_task(
            send_request(backend, model, api_url, prompt, prompt_len,
165
                         output_len, best_of, use_beam_search, pbar))
166
        tasks.append(task)
167
168
    await asyncio.gather(*tasks)
    pbar.close()
169
170
171
172
173
174
175


def main(args: argparse.Namespace):
    print(args)
    random.seed(args.seed)
    np.random.seed(args.seed)

176
    api_url = f"{args.protocol}://{args.host}:{args.port}{args.endpoint}"
177
178
    tokenizer = get_tokenizer(args.tokenizer,
                              trust_remote_code=args.trust_remote_code)
179
180
    input_requests = sample_requests(args.dataset, args.num_prompts, tokenizer)

181
    benchmark_start_time = time.perf_counter()
182
183
184
    asyncio.run(
        benchmark(args.backend, args.model, api_url, input_requests,
                  args.best_of, args.use_beam_search, args.request_rate))
185
    benchmark_end_time = time.perf_counter()
186
187
188
189
190
191
192
193
194
195
196
197
    benchmark_time = benchmark_end_time - benchmark_start_time
    print(f"Total time: {benchmark_time:.2f} s")
    print(f"Throughput: {args.num_prompts / benchmark_time:.2f} requests/s")

    # Compute the latency statistics.
    avg_latency = np.mean([latency for _, _, latency in REQUEST_LATENCY])
    print(f"Average latency: {avg_latency:.2f} s")
    avg_per_token_latency = np.mean([
        latency / (prompt_len + output_len)
        for prompt_len, output_len, latency in REQUEST_LATENCY
    ])
    print(f"Average latency per token: {avg_per_token_latency:.2f} s")
198
199
    avg_per_output_token_latency = np.mean(
        [latency / output_len for _, output_len, latency in REQUEST_LATENCY])
200
201
202
203
204
205
206
    print("Average latency per output token: "
          f"{avg_per_output_token_latency:.2f} s")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Benchmark the online serving throughput.")
207
208
209
    parser.add_argument("--backend",
                        type=str,
                        default="vllm",
Woosuk Kwon's avatar
Woosuk Kwon committed
210
                        choices=["vllm", "tgi"])
211
212
213
214
    parser.add_argument("--protocol",
                        type=str,
                        default="http",
                        choices=["http", "https"])
215
    parser.add_argument("--host", type=str, default="localhost")
216
    parser.add_argument("--port", type=int, default=8000)
217
218
219
220
221
    parser.add_argument("--endpoint", type=str, default="/generate")
    parser.add_argument("--model", type=str, default=None)
    parser.add_argument("--dataset",
                        type=str,
                        required=True,
222
                        help="Path to the dataset.")
223
224
225
    parser.add_argument("--tokenizer",
                        type=str,
                        required=True,
226
                        help="Name or path of the tokenizer.")
227
228
229
    parser.add_argument("--best-of",
                        type=int,
                        default=1,
230
                        help="Generates `best_of` sequences per prompt and "
231
                        "returns the best one.")
232
    parser.add_argument("--use-beam-search", action="store_true")
233
234
235
    parser.add_argument("--num-prompts",
                        type=int,
                        default=1000,
236
                        help="Number of prompts to process.")
237
238
239
    parser.add_argument("--request-rate",
                        type=float,
                        default=float("inf"),
240
                        help="Number of requests per second. If this is inf, "
241
242
243
                        "then all the requests are sent at time 0. "
                        "Otherwise, we use Poisson process to synthesize "
                        "the request arrival times.")
244
    parser.add_argument("--seed", type=int, default=0)
245
246
    parser.add_argument('--trust-remote-code',
                        action='store_true',
247
                        help='trust remote code from huggingface')
248
249
    args = parser.parse_args()
    main(args)