"vscode:/vscode.git/clone" did not exist on "a8fdaaee357aba2d2000fe7cea1ccc5faeefbf6d"
server.py 7.11 KB
Newer Older
Woosuk Kwon's avatar
Woosuk Kwon committed
1
import argparse
2
from typing import List, Tuple
Zhuohan Li's avatar
Zhuohan Li committed
3
4
5
import random

import ray
Woosuk Kwon's avatar
Woosuk Kwon committed
6
7

from cacheflow.master.scheduler import Scheduler
8
from cacheflow.models import get_memory_analyzer
Zhuohan Li's avatar
Zhuohan Li committed
9
from cacheflow.worker.controller import Controller, DeviceID
10
11
12
from cacheflow.sequence import SequenceGroup
from cacheflow.sampling_params import SamplingParams

13

14
15
16
17
18
19
20
21
22
23
24
class Server:
    def __init__(
        self,
        model: str,
        model_path: str,
        pipeline_parallel_size: int,
        tensor_parallel_size: int,
        block_size: int,
        dtype: str,
        seed: int,
        swap_space: int,
25
        max_num_batched_tokens: int,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
        num_nodes: int,
        num_devices_per_node: int,
        distributed_init_method: str,
        all_stage_devices: List[List[DeviceID]],
        gpu_memory: int,
        cpu_memory: int,
    ):
        self.num_nodes = num_nodes
        self.num_devices_per_node = num_devices_per_node
        self.world_size = pipeline_parallel_size * tensor_parallel_size

        self.memory_analyzer = get_memory_analyzer(
            model_name=model,
            block_size=block_size,
            dtype=dtype,
            gpu_memory=gpu_memory,
            cpu_memory=cpu_memory,
            tensor_parallel_size=tensor_parallel_size,
        )
        self.num_gpu_blocks = self.memory_analyzer.get_max_num_gpu_blocks(
46
            max_num_batched_tokens=max_num_batched_tokens)
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        self.num_cpu_blocks = self.memory_analyzer.get_max_num_cpu_blocks(
            swap_space=swap_space)
        print(f'# GPU blocks: {self.num_gpu_blocks}, '
              f'# CPU blocks: {self.num_cpu_blocks}')

        # Create a controller for each pipeline stage.
        self.controllers: List[Controller] = []
        for i in range(pipeline_parallel_size):
            controller = Controller(
                stage_id=i,
                stage_devices=all_stage_devices[i],
                world_size=self.world_size,
                pipeline_parallel_size=pipeline_parallel_size,
                tensor_parallel_size=tensor_parallel_size,
                distributed_init_method=distributed_init_method,
                model_name=model,
                block_size=block_size,
                num_gpu_blocks=self.num_gpu_blocks,
                num_cpu_blocks=self.num_cpu_blocks,
                dtype=dtype,
                seed=seed,
                model_path=model_path,
69
                max_num_batched_tokens=max_num_batched_tokens,
70
71
72
73
74
75
76
77
78
            )
            self.controllers.append(controller)

        # Create a scheduler.
        self.scheduler = Scheduler(
            controllers=self.controllers,
            block_size=block_size,
            num_gpu_blocks=self.num_gpu_blocks,
            num_cpu_blocks=self.num_cpu_blocks,
79
            max_num_batched_tokens=max_num_batched_tokens,
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        )
        # Connect the controllers.
        for i in range(len(self.controllers) - 1):
            self.controllers[i].set_next(self.controllers[i + 1])
        self.controllers[-1].set_next(self.scheduler)

    def add_sequence_groups(
        self,
        sequence_groups: List[Tuple[SequenceGroup, SamplingParams]]
    ):
        self.scheduler.add_sequence_groups(sequence_groups)

    def step(self):
        return self.scheduler.step()

    def has_unfinished_requests(self):
96
        return (self.scheduler.waiting or self.scheduler.running or
97
                self.scheduler.swapped)
Zhuohan Li's avatar
Zhuohan Li committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165


def initialize_ray_cluster(
    address: str = 'auto',
    pipeline_parallel_size: int = 1,
    tensor_parallel_size: int = 1,
) -> Tuple[int, int, str, List[List[DeviceID]]]:
    # Connect to a ray cluster.
    ray.init(address=address)

    # Assume we have a uniform cluster that each node has the same number of
    # GPUs for now.
    valid_node_resources = []
    num_devices_per_node = None
    for node in ray.nodes():
        if (not node['Alive']) or node['Resources']['GPU'] <= 0:
            continue
        if num_devices_per_node is None:
            num_devices_per_node = node['Resources']['GPU']
        else:
            assert num_devices_per_node == node['Resources']['GPU'], (
                "The number of GPUs per node is not uniform.")
        for key in node['Resources']:
            if key.startswith('node:'):
                valid_node_resources.append(key)

    num_nodes = len(valid_node_resources)

    assert (pipeline_parallel_size * tensor_parallel_size
            <= num_nodes * num_devices_per_node), (
                "The number of required GPUs exceeds the total number of "
                "available GPUs.")
    if tensor_parallel_size >= num_devices_per_node:
        assert tensor_parallel_size % num_devices_per_node == 0, (
            "The number of tensor parallelism is not divisible by the "
            "number of GPUs per node.")
    else:
        assert num_devices_per_node % tensor_parallel_size == 0, (
            "The number of GPUs per node is not divisible by the number "
            "of tensor parallelism.")

    # Assign GPUs to pipeline stages.
    rank = 0
    current_node_id = 0
    current_device_id = 0
    distributed_init_method = None
    all_stage_devices = []

    for i in range(pipeline_parallel_size):
        stage_devices = []
        for j in range(tensor_parallel_size):
            node_resource = valid_node_resources[current_node_id]
            stage_devices.append((rank, node_resource, current_device_id))
            if distributed_init_method is None:
                ip = node_resource.split("node:")[-1]
                port = random.randint(10000, 20000)
                distributed_init_method = f"tcp://{ip}:{port}"
            rank += 1
            current_device_id += 1
            if current_device_id >= num_devices_per_node:
                current_node_id += 1
                current_device_id = 0
        all_stage_devices.append(stage_devices)

    return (num_nodes, num_devices_per_node, distributed_init_method,
            all_stage_devices)


166
def add_server_arguments(parser: argparse.ArgumentParser):
Zhuohan Li's avatar
Zhuohan Li committed
167
168
169
170
171
    # Model arguments
    parser.add_argument('--model', type=str, default='facebook/opt-125m', help='model name')
    parser.add_argument('--model-path', type=str, default='~/.cacheflow/model_weights',
                        help='model path to download and load the weights')
    # Parallel arguments
172
173
    parser.add_argument('--pipeline-parallel-size', '-pp', type=int, default=1, help='number of pipeline stages')
    parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1, help='number of tensor parallel replicas')
Zhuohan Li's avatar
Zhuohan Li committed
174
175
176
177
178
179
180
    # KV cache arguments
    parser.add_argument('--block-size', type=int, default=8, choices=[8, 16], help='token block size')
    # NOTE(woosuk): If FlashAttention is used, the float data type is not supported.
    parser.add_argument('--dtype', type=str, default='half', choices=['half', 'float'], help='data type')
    # TODO(woosuk): Support fine-grained seeds (e.g., seed per request).
    parser.add_argument('--seed', type=int, default=0, help='random seed')
    parser.add_argument('--swap-space', type=int, default=20, help='CPU swap space size (GiB) per GPU')
181
    parser.add_argument('--max-num-batched-tokens', type=int, default=2560, help='maximum number of batched tokens')
182
    return parser