attention_kernels.cu 34.8 KB
Newer Older
1
2
3
4
5
#include <torch/extension.h>
#include <ATen/cuda/CUDAContext.h>

#include "attention_utils.h"
#include "cuda_primitives.h"
6
#include "reduction_utils.h"
7
8
9
10

#include <algorithm>

#define WARP_SIZE 32
11
12
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

namespace cacheflow {

// Grid: (num_heads, num_seqs).
template<
  typename scalar_t,
  int HEAD_SIZE,
  int BLOCK_SIZE,
  int NUM_THREADS>
__global__ void single_query_cached_kv_attention_kernel(
  scalar_t* __restrict__ out,             // [num_seqs, num_heads, head_size]
  const scalar_t* __restrict__ q,         // [num_seqs, num_heads, head_size]
  const scalar_t* __restrict__ k_cache,   // [num_blocks, num_heads, head_size/x, block_size, x]
  const scalar_t* __restrict__ v_cache,   // [num_blocks, num_heads, head_size, block_size]
  const float scale,
  const int* __restrict__ block_tables,   // [num_seqs, max_num_blocks_per_seq]
  const int* __restrict__ context_lens,   // [num_seqs]
Woosuk Kwon's avatar
Woosuk Kwon committed
30
31
  const int max_num_blocks_per_seq,
  const int q_stride) {
32
33
  constexpr int THREAD_GROUP_SIZE = MAX(WARP_SIZE / BLOCK_SIZE, 1);
  constexpr int NUM_TOKENS_PER_THREAD_GROUP = (BLOCK_SIZE + WARP_SIZE - 1) / WARP_SIZE;
34
35
36
37
38
39
40
41
42
43
44
  constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
  const int thread_idx = threadIdx.x;
  const int warp_idx = thread_idx / WARP_SIZE;
  const int lane = thread_idx % WARP_SIZE;

  const int head_idx = blockIdx.x;
  const int num_heads = gridDim.x;
  const int seq_idx = blockIdx.y;

  // A vector type to store a part of a key or a query.
  // The vector size is configured in such a way that the threads in a thread group
45
  // fetch or compute 16 bytes at a time.
46
47
  // For example, if the size of a thread group is 4 and the data type is half,
  // then the vector size is 16 / (4 * sizeof(half)) == 2.
48
  constexpr int VEC_SIZE = MAX(16 / (THREAD_GROUP_SIZE * sizeof(scalar_t)), 1);
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
  using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;

  constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
  constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;

  const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
  const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;

  // Load the query to registers.
  // Each thread in a thread group has a different part of the query.
  // For example, if the the thread group size is 4, then the first thread in the group
  // has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
  // th vectors of the query, and so on.
Woosuk Kwon's avatar
Woosuk Kwon committed
63
64
  // NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
  const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  Q_vec q_vecs[NUM_VECS_PER_THREAD];
#pragma unroll
  for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
    const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
    q_vecs[i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
  }

  // Memory planning.
  extern __shared__ char shared_mem[];
  // NOTE(woosuk): We use FP32 logits and accumulation.
  float *logits = reinterpret_cast<float*>(shared_mem);
  // Workspace for reduction.
  __shared__ float red_smem[2 * NUM_WARPS];

  // x == THREAD_GROUP_SIZE * VEC_SIZE
  // Each thread group fetches x elements from the key at a time.
  constexpr int x = 16 / sizeof(scalar_t);
  float qk_max = -FLT_MAX;

  const int* block_table = block_tables + seq_idx * max_num_blocks_per_seq;
  const int context_len = context_lens[seq_idx];
  const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;

  // Iterate over the key blocks.
  // Each warp fetches a block of keys for each iteration.
  // Each thread group in a warp fetches a key from the block, and computes
  // dot product with the query.
  for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
    const int physical_block_number = block_table[block_idx];

    // Load a key to registers.
    // Each thread in a thread group has a different part of the key.
    // For example, if the the thread group size is 4, then the first thread in the group
    // has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
    // vectors of the key, and so on.
100
101
102
103
    for (int i = 0; i < NUM_TOKENS_PER_THREAD_GROUP; i++) {
      const int physical_block_offset = (thread_group_idx + i * WARP_SIZE) % BLOCK_SIZE;
      const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
      K_vec k_vecs[NUM_VECS_PER_THREAD];
104
105

#pragma unroll
106
107
108
109
110
111
112
113
      for (int j = 0; j < NUM_VECS_PER_THREAD; j++) {
        const scalar_t* k_ptr = k_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
                                        + head_idx * HEAD_SIZE * BLOCK_SIZE
                                        + physical_block_offset * x;
        const int vec_idx = thread_group_offset + j * THREAD_GROUP_SIZE;
        const int offset1 = (vec_idx * VEC_SIZE) / x;
        const int offset2 = (vec_idx * VEC_SIZE) % x;
        k_vecs[j] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
114
115
      }

116
117
118
119
120
121
122
123
124
125
126
      // Compute dot product.
      // This includes a reduction across the threads in the same thread group.
      const float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs, k_vecs);
      const bool mask = token_idx >= context_len;
    
      if (thread_group_offset == 0) {
        // Store the partial reductions to shared memory.
        // NOTE(woosuk): It is required to zero out the masked logits.
        logits[token_idx] = mask ? 0.f : qk;
        // Update the max value.
        qk_max = mask ? qk_max : fmaxf(qk_max, qk);
127
128
129
      }
    }
  }
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

  // Perform reduction across the threads in the same warp to get the
  // max qk value for each "warp" (not across the thread block yet).
  // The 0-th thread of each thread group already has its max qk value.
#pragma unroll
  for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
    qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
  }
  if (lane == 0) {
    red_smem[warp_idx] = qk_max;
  }
  __syncthreads();

  // TODO(woosuk): Refactor this part.
  // Get the max qk value for the sequence.
  qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
#pragma unroll
  for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
      qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
  }
  // Broadcast the max qk value to all threads.
  qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);

  // Get the sum of the exp values.
  float exp_sum = 0.f;
155
  for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    float val = __expf(logits[i] - qk_max);
    logits[i] = val;
    exp_sum += val;
  }
  exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);

  // Compute softmax.
  const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
  for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
    logits[i] *= inv_sum;
  }
  __syncthreads();

  // Each thread will fetch 16 bytes from the value cache at a time.
170
  constexpr int V_VEC_SIZE = MIN(16 / sizeof(scalar_t), BLOCK_SIZE);
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
  using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
  using L_vec = typename FloatVec<V_vec>::Type;

  constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
  constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
  constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;

  float accs[NUM_ROWS_PER_THREAD];
#pragma unroll
  for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
    accs[i] = 0.f;
  }

  for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
    const int physical_block_number = block_table[block_idx];
    const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
    const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
    L_vec logits_vec = *reinterpret_cast<L_vec*>(logits + token_idx);

    const scalar_t* v_ptr = v_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
                                    + head_idx * HEAD_SIZE * BLOCK_SIZE;
#pragma unroll
    for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
      const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
      if (row_idx < HEAD_SIZE) {
        const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
        V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
        accs[i] += dot(logits_vec, cast_to_float(v_vec));
      }
    }
  }

  // Perform reduction within each warp.
#pragma unroll
  for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
    float acc = accs[i];
#pragma unroll
    for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
      acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
    }
    accs[i] = acc;
  }

  // NOTE(woosuk): A barrier is required because the shared memory space for logits
  // is reused for the output.
  __syncthreads();

  // Perform reduction across warps.
  float* out_smem = reinterpret_cast<float*>(shared_mem);
#pragma unroll
  for (int i = NUM_WARPS; i > 1; i /= 2) {
    int mid = i / 2;
    // Upper warps write to shared memory.
    if (warp_idx >= mid && warp_idx < i) {
      float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
#pragma unroll
      for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
        const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
        if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
          dst[row_idx] = accs[i];
        }
      }
    }
    __syncthreads();

    // Lower warps update the output.
    if (warp_idx < mid) {
      const float* src = &out_smem[warp_idx * HEAD_SIZE];
#pragma unroll
      for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
        const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
        if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
          accs[i] += src[row_idx];
        }
      }
    }
    __syncthreads();
  }

  // Write the final output.
  if (warp_idx == 0) {
    scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
#pragma unroll
    for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
      const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
      if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
        convert_from_float(*(out_ptr + row_idx), accs[i]);
      }
    }
  }
}

263
264
265
266
267
268
269
270
271
272
273
274
} // namespace cacheflow

#define LAUNCH_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS)                        \
  cacheflow::single_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>   \
  <<<grid, block, shared_mem_size, stream>>>(                                                 \
    out_ptr,                                                                                  \
    query_ptr,                                                                                \
    key_cache_ptr,                                                                            \
    value_cache_ptr,                                                                          \
    scale,                                                                                    \
    block_tables_ptr,                                                                         \
    context_lens_ptr,                                                                         \
Woosuk Kwon's avatar
Woosuk Kwon committed
275
276
    max_num_blocks_per_seq,                                                                   \
    query_stride);
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

// TODO(woosuk): Tune NUM_THREADS.
template<
  typename T,
  int BLOCK_SIZE,
  int NUM_THREADS = 128>
void single_query_cached_kv_attention_launcher(
  torch::Tensor& out,
  torch::Tensor& query,
  torch::Tensor& key_cache,
  torch::Tensor& value_cache,
  float scale,
  torch::Tensor& block_tables,
  torch::Tensor& context_lens,
  int max_context_len) {
  int num_seqs = query.size(0);
  int num_heads = query.size(1);
  int head_size = query.size(2);
  int max_num_blocks_per_seq = block_tables.size(1);
Woosuk Kwon's avatar
Woosuk Kwon committed
296
  int query_stride = query.stride(0);
297

298
299
300
  int thread_group_size = MAX(WARP_SIZE / BLOCK_SIZE, 1);
  assert(head_size % thread_group_size == 0);

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
  T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
  T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
  T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
  T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
  int* block_tables_ptr = block_tables.data_ptr<int>();
  int* context_lens_ptr = context_lens.data_ptr<int>();

  constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
  int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
  int logits_size = padded_max_context_len * sizeof(float);
  int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
  int shared_mem_size = std::max(logits_size, outputs_size);

  dim3 grid(num_heads, num_seqs);
  dim3 block(NUM_THREADS);
  const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
  switch (head_size) {
    case 32:
      LAUNCH_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
      break;
    case 64:
      LAUNCH_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
      break;
    case 80:
      LAUNCH_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
      break;
    case 96:
      LAUNCH_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
      break;
    case 128:
      LAUNCH_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
      break;
    case 160:
      LAUNCH_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
      break;
    case 192:
      LAUNCH_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
      break;
    case 256:
      LAUNCH_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
      break;
    default:
      assert(false);
      break;
  }
}

348
349
350
351
352
353
354
355
356
357
358
#define CALL_KERNEL_LAUNCHER(T, BLOCK_SIZE)                         \
  single_query_cached_kv_attention_launcher<T, BLOCK_SIZE>(         \ 
        out,                                                        \
        query,                                                      \
        key_cache,                                                  \
        value_cache,                                                \
        scale,                                                      \
        block_tables,                                               \
        context_lens,                                               \
        max_context_len);

359
void single_query_cached_kv_attention(
Woosuk Kwon's avatar
Woosuk Kwon committed
360
361
362
363
  torch::Tensor& out,             // [num_seqs, num_heads, head_size]
  torch::Tensor& query,           // [num_seqs, num_heads, head_size]
  torch::Tensor& key_cache,       // [num_blocks, num_heads, head_size/x, block_size, x]
  torch::Tensor& value_cache,     // [num_blocks, num_heads, head_size, block_size]
364
  float scale,
Woosuk Kwon's avatar
Woosuk Kwon committed
365
366
  torch::Tensor& block_tables,    // [num_seqs, max_num_blocks_per_seq]
  torch::Tensor& context_lens,    // [num_seqs]
367
368
369
370
371
  int block_size,
  int max_context_len) {
  // TODO(woosuk): Support BF16.
  if (query.element_size() == 2) {
    // Half.
372
373
374
375
376
377
378
379
    if (block_size == 1) {
      CALL_KERNEL_LAUNCHER(uint16_t, 1);
    } else if (block_size == 2) {
      CALL_KERNEL_LAUNCHER(uint16_t, 2);
    } else if (block_size == 4) {
      CALL_KERNEL_LAUNCHER(uint16_t, 4);
    } else if (block_size == 8) {
      CALL_KERNEL_LAUNCHER(uint16_t, 8);
380
    } else if (block_size == 16) {
381
      CALL_KERNEL_LAUNCHER(uint16_t, 16);
Woosuk Kwon's avatar
Woosuk Kwon committed
382
    } else if (block_size == 32) {
383
384
385
386
387
388
389
      CALL_KERNEL_LAUNCHER(uint16_t, 32);
    } else if (block_size == 64) {
      CALL_KERNEL_LAUNCHER(uint16_t, 64);
    } else if (block_size == 128) {
      CALL_KERNEL_LAUNCHER(uint16_t, 128);
    } else if (block_size == 256) {
      CALL_KERNEL_LAUNCHER(uint16_t, 256);
390
391
392
393
    } else {
      assert(false);
    }
  } else {
394
    // Float.
395
396
397
398
    assert(false);
  }
}

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
// namespace cacheflow {

// // Grid: (num_heads, num_query_tokens).
// template<
//   typename scalar_t,
//   int HEAD_SIZE,
//   int BLOCK_SIZE,
//   int NUM_THREADS>
// __device__ void multi_query_cached_kv_attention_kernel_unoptimized_(
//   scalar_t* __restrict__ out,             // [num_seqs, num_heads, head_size]
//   const scalar_t* __restrict__ q,         // [num_seqs, num_heads, head_size]
//   const int seq_start_idx,
//   const int seq_len,
//   const scalar_t* __restrict__ k_cache,   // [num_blocks, num_heads, head_size/x, block_size, x]
//   const scalar_t* __restrict__ v_cache,   // [num_blocks, num_heads, head_size, block_size]
//   const float scale,
//   const int* __restrict__ block_table,   // [num_seqs, max_num_blocks_per_seq]
//   const int context_len,
//   const int max_num_blocks_per_seq,
//   const int q_stride) {
//   constexpr int THREAD_GROUP_SIZE = WARP_SIZE / BLOCK_SIZE;
//   constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
//   const int thread_idx = threadIdx.x;
//   const int warp_idx = thread_idx / WARP_SIZE;
//   const int lane = thread_idx % WARP_SIZE;

//   const int head_idx = blockIdx.x;
//   const int num_heads = gridDim.x;
//   const int seq_idx = blockIdx.y;

//   // A vector type to store a part of a key or a query.
//   // The vector size is configured in such a way that the threads in a thread group
//   // fetch or comput 16 bytes at a time.
//   // For example, if the size of a thread group is 4 and the data type is half,
//   // then the vector size is 16 / (4 * sizeof(half)) == 2.
//   constexpr int VEC_SIZE = 16 / (THREAD_GROUP_SIZE * sizeof(scalar_t));
//   using K_vec = typename Vec<scalar_t, VEC_SIZE>::Type;
//   using Q_vec = typename Vec<scalar_t, VEC_SIZE>::Type;

//   constexpr int NUM_ELEMS_PER_THREAD = HEAD_SIZE / THREAD_GROUP_SIZE;
//   constexpr int NUM_VECS_PER_THREAD = NUM_ELEMS_PER_THREAD / VEC_SIZE;

//   const int thread_group_idx = thread_idx / THREAD_GROUP_SIZE;
//   const int thread_group_offset = thread_idx % THREAD_GROUP_SIZE;

//   // Load the query to registers.
//   // Each thread in a thread group has a different part of the query.
//   // For example, if the the thread group size is 4, then the first thread in the group
//   // has 0, 4, 8, ... th vectors of the query, and the second thread has 1, 5, 9, ...
//   // th vectors of the query, and so on.
//   // NOTE(woosuk): Because q is split from a qkv tensor, it may not be contiguous.
//   const scalar_t* q_ptr = q + seq_idx * q_stride + head_idx * HEAD_SIZE;
//   Q_vec q_vecs[NUM_VECS_PER_THREAD];
// #pragma unroll
//   for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
//     const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
//     q_vecs[i] = *reinterpret_cast<const Q_vec*>(q_ptr + vec_idx * VEC_SIZE);
//   }

//   // Memory planning.
//   extern __shared__ char shared_mem[];
//   // NOTE(woosuk): We use FP32 logits and accumulation.
//   float *logits = reinterpret_cast<float*>(shared_mem);
//   // Workspace for reduction.
//   __shared__ float red_smem[2 * NUM_WARPS];

//   // x == THREAD_GROUP_SIZE * VEC_SIZE
//   // Each thread group fetches x elements from the key at a time.
//   constexpr int x = 16 / sizeof(scalar_t);
//   float qk_max = -FLT_MAX;

//   const int num_blocks = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
//   const int mask_boundary = context_len - seq_len + 1 + (seq_idx - seq_start_idx);

//   // Iterate over the key blocks.
//   // Each warp fetches a block of keys for each iteration.
//   // Each thread group in a warp fetches a key from the block, and computes
//   // dot product with the query.
//   for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
//     const int physical_block_number = block_table[block_idx];
//     const int physical_block_offset = thread_group_idx % BLOCK_SIZE;
//     const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;

//     // Load a key to registers.
//     // Each thread in a thread group has a different part of the key.
//     // For example, if the the thread group size is 4, then the first thread in the group
//     // has 0, 4, 8, ... th vectors of the key, and the second thread has 1, 5, 9, ... th
//     // vectors of the key, and so on.
//     K_vec k_vecs[NUM_VECS_PER_THREAD];
// #pragma unroll
//     for (int i = 0; i < NUM_VECS_PER_THREAD; i++) {
//       const scalar_t* k_ptr = k_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
//                                       + head_idx * HEAD_SIZE * BLOCK_SIZE
//                                       + physical_block_offset * x;
//       const int vec_idx = thread_group_offset + i * THREAD_GROUP_SIZE;
//       const int offset1 = (vec_idx * VEC_SIZE) / x;
//       const int offset2 = (vec_idx * VEC_SIZE) % x;
//       k_vecs[i] = *reinterpret_cast<const K_vec*>(k_ptr + offset1 * BLOCK_SIZE * x + offset2);
//     }

//     // Compute dot product.
//     // This includes a reduction across the threads in the same thread group.
//     const float qk = scale * Qk_dot<scalar_t, THREAD_GROUP_SIZE>::dot(q_vecs, k_vecs);
//     const bool mask = token_idx >= mask_boundary;

//     if (thread_group_offset == 0) {
//       // Store the partial reductions to shared memory.
//       // NOTE(woosuk): It is required to zero out the masked logits.
//       logits[token_idx] = mask ? 0.f : qk;
//       // Update the max value.
//       qk_max = mask ? qk_max : fmaxf(qk_max, qk);
//     }
//   }

//   // Perform reduction across the threads in the same warp to get the
//   // max qk value for each "warp" (not across the thread block yet).
//   // The 0-th thread of each thread group already has its max qk value.
// #pragma unroll
//   for (int mask = WARP_SIZE / 2; mask >= THREAD_GROUP_SIZE; mask /= 2) {
//     qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
//   }
//   if (lane == 0) {
//     red_smem[warp_idx] = qk_max;
//   }
//   __syncthreads();

//   // TODO(woosuk): Refactor this part.
//   // Get the max qk value for the sequence.
//   qk_max = lane < NUM_WARPS ? red_smem[lane] : -FLT_MAX;
// #pragma unroll
//   for (int mask = NUM_WARPS / 2; mask >= 1; mask /= 2) {
//       qk_max = fmaxf(qk_max, __shfl_xor_sync(uint32_t(-1), qk_max, mask));
//   }
//   // Broadcast the max qk value to all threads.
//   qk_max = __shfl_sync(uint32_t(-1), qk_max, 0);

//   // Get the sum of the exp values.
//   float exp_sum = 0.f;
//   for (int i = thread_idx; i < mask_boundary; i += NUM_THREADS) {
//     float val = __expf(logits[i] - qk_max);
//     logits[i] = val;
//     exp_sum += val;
//   }
//   exp_sum = block_sum<NUM_WARPS>(&red_smem[NUM_WARPS], exp_sum);

//   // Compute softmax.
//   const float inv_sum = __fdividef(1.f, exp_sum + 1e-6f);
//   for (int i = thread_idx; i < context_len; i += NUM_THREADS) {
//     logits[i] *= inv_sum;
//   }
//   __syncthreads();

//   // Each thread will fetch 16 bytes from the value cache at a time.
//   constexpr int V_VEC_SIZE = 16 / sizeof(scalar_t);
//   using V_vec = typename Vec<scalar_t, V_VEC_SIZE>::Type;
//   using L_vec = typename FloatVec<V_vec>::Type;

//   constexpr int NUM_V_VECS_PER_ROW = BLOCK_SIZE / V_VEC_SIZE;
//   constexpr int NUM_ROWS_PER_ITER = WARP_SIZE / NUM_V_VECS_PER_ROW;
//   constexpr int NUM_ROWS_PER_THREAD = (HEAD_SIZE + NUM_ROWS_PER_ITER - 1) / NUM_ROWS_PER_ITER;

//   float accs[NUM_ROWS_PER_THREAD];
// #pragma unroll
//   for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
//     accs[i] = 0.f;
//   }

//   for (int block_idx = warp_idx; block_idx < num_blocks; block_idx += NUM_WARPS) {
//     const int physical_block_number = block_table[block_idx];
//     const int physical_block_offset = (lane % NUM_V_VECS_PER_ROW) * V_VEC_SIZE;
//     const int token_idx = block_idx * BLOCK_SIZE + physical_block_offset;
//     L_vec logits_vec = *reinterpret_cast<L_vec*>(logits + token_idx);

//     const scalar_t* v_ptr = v_cache + physical_block_number * num_heads * HEAD_SIZE * BLOCK_SIZE
//                                     + head_idx * HEAD_SIZE * BLOCK_SIZE;
// #pragma unroll
//     for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
//       const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
//       if (row_idx < HEAD_SIZE) {
//         const int offset = row_idx * BLOCK_SIZE + physical_block_offset;
//         V_vec v_vec = *reinterpret_cast<const V_vec*>(v_ptr + offset);
//         accs[i] += dot(logits_vec, cast_to_float(v_vec));
//       }
//     }
//   }

//   // Perform reduction within each warp.
// #pragma unroll
//   for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
//     float acc = accs[i];
// #pragma unroll
//     for (int mask = NUM_V_VECS_PER_ROW / 2; mask >= 1; mask /= 2) {
//       acc += __shfl_xor_sync(uint32_t(-1), acc, mask);
//     }
//     accs[i] = acc;
//   }

//   // NOTE(woosuk): A barrier is required because the shared memory space for logits
//   // is reused for the output.
//   __syncthreads();

//   // Perform reduction across warps.
//   float* out_smem = reinterpret_cast<float*>(shared_mem);
// #pragma unroll
//   for (int i = NUM_WARPS; i > 1; i /= 2) {
//     int mid = i / 2;
//     // Upper warps write to shared memory.
//     if (warp_idx >= mid && warp_idx < i) {
//       float* dst = &out_smem[(warp_idx - mid) * HEAD_SIZE];
// #pragma unroll
//       for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
//         const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
//         if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
//           dst[row_idx] = accs[i];
//         }
//       }
//     }
//     __syncthreads();

//     // Lower warps update the output.
//     if (warp_idx < mid) {
//       const float* src = &out_smem[warp_idx * HEAD_SIZE];
// #pragma unroll
//       for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
//         const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
//         if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
//           accs[i] += src[row_idx];
//         }
//       }
//     }
//     __syncthreads();
//   }

//   // Write the final output.
//   if (warp_idx == 0) {
//     scalar_t* out_ptr = out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
// #pragma unroll
//     for (int i = 0; i < NUM_ROWS_PER_THREAD; i++) {
//       const int row_idx = lane / NUM_V_VECS_PER_ROW + i * NUM_ROWS_PER_ITER;
//       if (row_idx < HEAD_SIZE && lane % NUM_V_VECS_PER_ROW == 0) {
//         convert_from_float(*(out_ptr + row_idx), accs[i]);
//       }
//     }
//   }
// }


// // Grid: (num_heads, num_query_tokens).
// template<
//   typename scalar_t,
//   int HEAD_SIZE,
//   int BLOCK_SIZE,
//   int NUM_THREADS>
// __global__ void multi_query_cached_kv_attention_kernel(
//   const int* cu_query_lens,               // [num_prompts+1]
//   const int* seq_prompt_mapping,          // [num_seqs] mapping from seq_idx to prompt_idx
//   scalar_t* __restrict__ out,             // [num_seqs, num_heads, head_size]
//   const scalar_t* __restrict__ q,         // [num_seqs, num_heads, head_size]
//   const scalar_t* __restrict__ k_cache,   // [num_blocks, num_heads, head_size/x, block_size, x]
//   const scalar_t* __restrict__ v_cache,   // [num_blocks, num_heads, head_size, block_size]
//   const float scale,
//   const int* __restrict__ block_tables,   // [num_prompts, max_num_blocks_per_seq]
//   const int* __restrict__ context_lens,   // [num_prompts]
//   const int max_num_blocks_per_seq,
//   const int q_stride) {
//     const int seq_idx = blockIdx.y;
//     const int prompt_idx = seq_prompt_mapping[seq_idx];
//     const int seq_start_idx = cu_query_lens[prompt_idx];
//     const int seq_len = cu_query_lens[prompt_idx + 1] - seq_start_idx;
//     const int* block_table = block_tables + prompt_idx * max_num_blocks_per_seq;
//     const int context_len = context_lens[prompt_idx];
//     multi_query_cached_kv_attention_kernel_unoptimized_<
//         scalar_t, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>(
//           out,
//           q,
//           seq_start_idx,
//           seq_len,
//           k_cache,
//           v_cache,
//           scale,
//           block_table,
//           context_len,
//           max_num_blocks_per_seq,
//           q_stride);
// }

// } // namespace cacheflow

// #define LAUNCH_MULTI_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS)                  \
//   cacheflow::multi_query_cached_kv_attention_kernel<T, HEAD_SIZE, BLOCK_SIZE, NUM_THREADS>    \
//   <<<grid, block, shared_mem_size, stream>>>(                                                 \
//     cu_query_lens_ptr,                                                                        \
//     seq_prompt_mapping_ptr,                                                                   \
//     out_ptr,                                                                                  \
//     query_ptr,                                                                                \
//     key_cache_ptr,                                                                            \
//     value_cache_ptr,                                                                          \
//     scale,                                                                                    \
//     block_tables_ptr,                                                                         \
//     context_lens_ptr,                                                                         \
//     max_num_blocks_per_seq,                                                                   \
//     query_stride);


// // TODO(woosuk): Tune NUM_THREADS.
// template<
//   typename T,
//   int BLOCK_SIZE,
//   int NUM_THREADS = 128>
// void multi_query_cached_kv_attention_launcher(
//   torch::Tensor& cu_query_lens,
//   torch::Tensor& seq_prompt_mapping,
//   torch::Tensor& out,
//   torch::Tensor& query,
//   torch::Tensor& key_cache,
//   torch::Tensor& value_cache,
//   float scale,
//   torch::Tensor& block_tables,
//   torch::Tensor& context_lens,
//   int max_context_len) {
//   int num_seqs = query.size(0);
//   int num_heads = query.size(1);
//   int head_size = query.size(2);
//   int max_num_blocks_per_seq = block_tables.size(1);
//   int query_stride = query.stride(0);

//   int* cu_query_lens_ptr = cu_query_lens.data_ptr<int>();
//   int* seq_prompt_mapping_ptr = seq_prompt_mapping.data_ptr<int>();
//   T* out_ptr = reinterpret_cast<T*>(out.data_ptr());
//   T* query_ptr = reinterpret_cast<T*>(query.data_ptr());
//   T* key_cache_ptr = reinterpret_cast<T*>(key_cache.data_ptr());
//   T* value_cache_ptr = reinterpret_cast<T*>(value_cache.data_ptr());
//   int* block_tables_ptr = block_tables.data_ptr<int>();
//   int* context_lens_ptr = context_lens.data_ptr<int>();

//   constexpr int NUM_WARPS = NUM_THREADS / WARP_SIZE;
//   int padded_max_context_len = ((max_context_len + BLOCK_SIZE - 1) / BLOCK_SIZE) * BLOCK_SIZE;
//   int logits_size = padded_max_context_len * sizeof(float);
//   int outputs_size = (NUM_WARPS / 2) * head_size * sizeof(float);
//   int shared_mem_size = std::max(logits_size, outputs_size);

//   dim3 grid(num_heads, num_seqs);
//   dim3 block(NUM_THREADS);
//   const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
//   switch (head_size) {
//     case 32:
//       LAUNCH_MULTI_ATTENTION_KERNEL(T, 32, BLOCK_SIZE, NUM_THREADS);
//       break;
//     case 64:
//       LAUNCH_MULTI_ATTENTION_KERNEL(T, 64, BLOCK_SIZE, NUM_THREADS);
//       break;
//     case 80:
//       LAUNCH_MULTI_ATTENTION_KERNEL(T, 80, BLOCK_SIZE, NUM_THREADS);
//       break;
//     case 96:
//       LAUNCH_MULTI_ATTENTION_KERNEL(T, 96, BLOCK_SIZE, NUM_THREADS);
//       break;
//     case 128:
//       LAUNCH_MULTI_ATTENTION_KERNEL(T, 128, BLOCK_SIZE, NUM_THREADS);
//       break;
//     case 160:
//       LAUNCH_MULTI_ATTENTION_KERNEL(T, 160, BLOCK_SIZE, NUM_THREADS);
//       break;
//     case 192:
//       LAUNCH_MULTI_ATTENTION_KERNEL(T, 192, BLOCK_SIZE, NUM_THREADS);
//       break;
//     case 256:
//       LAUNCH_MULTI_ATTENTION_KERNEL(T, 256, BLOCK_SIZE, NUM_THREADS);
//       break;
//     default:
//       assert(false);
//       break;
//   }
// }

// void multi_query_cached_kv_attention(
//   torch::Tensor& cu_query_lens,
//   torch::Tensor& out,
//   torch::Tensor& query,
//   torch::Tensor& key_cache,
//   torch::Tensor& value_cache,
//   float scale,
//   torch::Tensor& block_tables,
//   torch::Tensor& context_lens,
//   int block_size,
//   int max_context_len) {

//   torch::Tensor query_lens = cu_query_lens.to(torch::kCPU);
787
  
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
//   int num_queries = query_lens.size(0) - 1;
//   const int* query_lens_ptr = query_lens.data_ptr<int>();
//   int num_seqs = query.size(0);

//   torch::Tensor cpu_tensor = torch::empty({num_seqs}, torch::dtype(torch::kInt32));
//   auto accessor = cpu_tensor.accessor<int32_t, 1>();
//   for (int i = 0, query_cursor = 0; i < num_seqs; ++i) {
//     if (i >= query_lens_ptr[query_cursor + 1]) {
//       ++query_cursor; 
//     }
//     accessor[i] = query_cursor;
//   }

//   // TODO(suquark): This can be slow, as it to(torch::kCPU) and to(torch::kCUDA)
//   // implicitly synchronizes the CPU and GPU. And we can avoid this issue by giving
//   // the mapping as an input parameter. Let's do this optimization in a later PR.
//   torch::Tensor seq_prompt_mapping = cpu_tensor.to(torch::kCUDA);

//   // TODO(woosuk): Support BF16.
//   if (query.element_size() == 2) {
//     // Half.
//     if (block_size == 8) {
//       multi_query_cached_kv_attention_launcher<uint16_t, 8>(
//         cu_query_lens,
//         seq_prompt_mapping,
//         out,
//         query,
//         key_cache,
//         value_cache,
//         scale,
//         block_tables,
//         context_lens,
//         max_context_len);
//     } else if (block_size == 16) {
//       multi_query_cached_kv_attention_launcher<uint16_t, 16>(
//         cu_query_lens,
//         seq_prompt_mapping,
//         out,
//         query,
//         key_cache,
//         value_cache,
//         scale,
//         block_tables,
//         context_lens,
//         max_context_len);
//     } else if (block_size == 32) {
//       multi_query_cached_kv_attention_launcher<uint16_t, 32>(
//         cu_query_lens,
//         seq_prompt_mapping,
//         out,
//         query,
//         key_cache,
//         value_cache,
//         scale,
//         block_tables,
//         context_lens,
//         max_context_len);
//     } else {
//       assert(false);
//     }
//   } else if (query.element_size() == 4) {
//     // Float.
//     if (block_size == 8) {
//       multi_query_cached_kv_attention_launcher<float, 8>(
//         cu_query_lens,
//         seq_prompt_mapping,
//         out,
//         query,
//         key_cache,
//         value_cache,
//         scale,
//         block_tables,
//         context_lens,
//         max_context_len);
//     } else if (block_size == 16) {
//       multi_query_cached_kv_attention_launcher<float, 16>(
//         cu_query_lens,
//         seq_prompt_mapping,
//         out,
//         query,
//         key_cache,
//         value_cache,
//         scale,
//         block_tables,
//         context_lens,
//         max_context_len);
//     } else if (block_size == 32) {
//       multi_query_cached_kv_attention_launcher<float, 32>(
//         cu_query_lens,
//         seq_prompt_mapping,
//         out,
//         query,
//         key_cache,
//         value_cache,
//         scale,
//         block_tables,
//         context_lens,
//         max_context_len);
//     } else {
//       assert(false);
//     }
//   } else {
//     assert(false);
//   }
// }
893

894
#undef WARP_SIZE
895
896
#undef MAX
#undef MIN