benchmark_latency.py 2.6 KB
Newer Older
1
"""Benchmark the latency of processing a single batch of requests."""
2
3
4
5
6
import argparse
import time

import numpy as np
import torch
7
from tqdm import tqdm
8

Woosuk Kwon's avatar
Woosuk Kwon committed
9
from vllm import LLM, SamplingParams
10
11
12


def main(args: argparse.Namespace):
13
14
15
16
    print(args)

    # Process all the requests in a single batch if possible.
    # NOTE(woosuk): If the request cannot be processed in a single batch,
Zhuohan Li's avatar
Zhuohan Li committed
17
    # the engine will automatically process the request in multiple batches.
18
19
20
21
22
23
    llm = LLM(
        model=args.model,
        tensor_parallel_size=args.tensor_parallel_size,
        max_num_seqs=args.batch_size,
        max_num_batched_tokens=args.batch_size * args.input_len,
    )
24

Woosuk Kwon's avatar
Woosuk Kwon committed
25
26
27
28
29
    sampling_params = SamplingParams(
        n=args.n,
        temperature=0.0 if args.use_beam_search else 1.0,
        top_p=1.0,
        use_beam_search=args.use_beam_search,
30
        ignore_eos=True,
Woosuk Kwon's avatar
Woosuk Kwon committed
31
32
        max_tokens=args.output_len,
    )
33
    print(sampling_params)
34
    dummy_prompt_token_ids = [[0] * args.input_len] * args.batch_size
35

36
    def run_to_completion(profile: bool = False):
37
38
39
        if profile:
            torch.cuda.cudart().cudaProfilerStart()
        start_time = time.time()
40

Woosuk Kwon's avatar
Woosuk Kwon committed
41
42
        llm.generate(prompt_token_ids=dummy_prompt_token_ids,
                     sampling_params=sampling_params,
43
44
                     use_tqdm=False)

45
46
47
48
49
50
        end_time = time.time()
        latency = end_time - start_time
        if profile:
            torch.cuda.cudart().cudaProfilerStop()
        return latency

51
52
    print("Warming up...")
    run_to_completion(profile=False)
53
54
55

    # Benchmark.
    latencies = []
56
57
    for _ in tqdm(range(args.num_iters), desc="Profiling iterations"):
        latencies.append(run_to_completion(profile=False))
58
59
60
61
    print(f'Avg latency: {np.mean(latencies)} seconds')


if __name__ == '__main__':
62
    parser = argparse.ArgumentParser(
63
64
65
66
        description='Benchmark the latency of processing a single batch of '
                    'requests till completion.')
    parser.add_argument('--model', type=str, default='facebook/opt-125m')
    parser.add_argument('--tensor-parallel-size', '-tp', type=int, default=1)
67
68
69
    parser.add_argument('--input-len', type=int, default=32)
    parser.add_argument('--output-len', type=int, default=128)
    parser.add_argument('--batch-size', type=int, default=8)
70
71
    parser.add_argument('--n', type=int, default=1,
                        help='Number of generated sequences per prompt.')
72
    parser.add_argument('--use-beam-search', action='store_true')
73
74
    parser.add_argument('--num-iters', type=int, default=3,
                        help='Number of iterations to run.')
75
76
    args = parser.parse_args()
    main(args)