openai_frontend.py 10.8 KB
Newer Older
Zhuohan Li's avatar
Zhuohan Li committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# Adapted from https://github.com/lm-sys/FastChat/blob/168ccc29d3f7edc50823016105c024fe2282732a/fastchat/serve/openai_api_server.py

import argparse
from http import HTTPStatus
import json
import time
from typing import AsyncGenerator, Dict, List, Optional

import fastapi
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
import uvicorn

from cacheflow.outputs import RequestOutput
from cacheflow.server.arg_utils import ServerArgs
from cacheflow.server.async_llm_server import AsyncLLMServer
from cacheflow.server.tokenizer_utils import get_tokenizer
from cacheflow.logger import init_logger
from cacheflow.sampling_params import SamplingParams
from cacheflow.utils import random_uuid
from cacheflow.entrypoints.openai.protocol import (
    CompletionRequest,
    CompletionResponse,
    CompletionResponseChoice,
    CompletionResponseStreamChoice,
    CompletionStreamResponse,
    ErrorResponse,
    LogProbs,
    ModelCard,
    ModelList,
    ModelPermission,
    UsageInfo,
)


logger = init_logger(__name__)
served_model = None
app = fastapi.FastAPI()


def create_error_response(status_code: HTTPStatus,
                          message: str) -> JSONResponse:
    return JSONResponse(
        ErrorResponse(message=message, type="invalid_request_error").dict(),
        status_code=status_code.value
    )


@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request, exc):
    return create_error_response(HTTPStatus.BAD_REQUEST, str(exc))


async def check_model(request) -> Optional[JSONResponse]:
    if request.model == served_model:
        return
    ret = create_error_response(
        HTTPStatus.NOT_FOUND,
        f"The model `{request.model}` does not exist.",
    )
    return ret


@app.get("/v1/models")
async def show_available_models():
    """Show available models. Right now we only have one model."""
    model_cards = [ModelCard(id=served_model, root=served_model,
                             permission=[ModelPermission()])]
    return ModelList(data=model_cards)


def create_logprobs(token_ids: List[int],
                    id_logprobs: List[Dict[int, float]],
                    initial_text_offset: int = 0) -> LogProbs:
    """Create OpenAI-style logprobs."""
    logprobs = LogProbs()
    last_token_len = 0
    for token_id, id_logprob in zip(token_ids, id_logprobs):
        token = tokenizer.convert_ids_to_tokens(token_id)
        logprobs.tokens.append(token)
        logprobs.token_logprobs.append(id_logprob[token_id])
        if len(logprobs.text_offset) == 0:
            logprobs.text_offset.append(initial_text_offset)
        else:
            logprobs.text_offset.append(logprobs.text_offset[-1] + last_token_len)
        last_token_len = len(token)

        logprobs.top_logprobs.append(
            {tokenizer.convert_ids_to_tokens(i): p
             for i, p in id_logprob.items()})
    return logprobs


@app.post("/v1/completions")
async def create_completion(request: CompletionRequest):
    logger.info(f"Received completion request: {request}")

    error_check_ret = await check_model(request)
    if error_check_ret is not None:
        return error_check_ret

    if request.echo:
        # We do not support echo since the cacheflow server does not
        # currently support getting the logprobs of prompt tokens.
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                     "echo is not currently supported")

    if request.suffix is not None:
        # The language models we currently support do not support suffix.
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                    "suffix is not currently supported")

    if request.logit_bias is not None:
        # TODO: support logit_bias in cacheflow server.
        return create_error_response(HTTPStatus.BAD_REQUEST,
                                     "logit_bias is not currently supported")

    model_name = request.model
    request_id = f"cmpl-{random_uuid()}"
    prompt = request.prompt
    created_time = int(time.time())
    try:
        sampling_params = SamplingParams(
            n=request.n,
            best_of=request.best_of,
            presence_penalty=request.presence_penalty,
            frequency_penalty=request.frequency_penalty,
            temperature=request.temperature,
            top_p=request.top_p,
            top_k=request.top_k,
            stop=request.stop,
            ignore_eos=request.ignore_eos,
            max_tokens=request.max_tokens,
            logprobs=request.logprobs,
            use_beam_search=request.use_beam_search,
        )
    except ValueError as e:
        return create_error_response(HTTPStatus.BAD_REQUEST, str(e))

    result_generator = server.generate(prompt, sampling_params,
                                       request_id=request_id)

    # Similar to the OpenAI API, when n != best_of, we do not stream the
    # results. In addition, we do not stream the results when use beam search.
    stream = (request.stream and
              (request.best_of is None or request.n == request.best_of) and
              not request.use_beam_search)

    def create_stream_response_json(index: int,
                                    text: str,
                                    logprobs: Optional[LogProbs] = None,
                                    finish_reason: Optional[str] = None) -> str:
        choice_data = CompletionResponseStreamChoice(
            index=index,
            text=text,
            logprobs=logprobs,
            finish_reason=finish_reason,
        )
        response = CompletionStreamResponse(
            id=request_id,
            created=created_time,
            model=model_name,
            choices=[choice_data],
        )
        response_json = response.json(ensure_ascii=False)

        return response_json

    async def completion_stream_generator() -> AsyncGenerator[str, None]:
        previous_texts = [""] * request.n
        previous_num_tokens = [0] * request.n
        async for res in result_generator:
            res: RequestOutput
            for output in res.outputs:
                i = output.index
                delta_text = output.text[len(previous_texts[i]):]
                if request.logprobs is not None:
                    logprobs = create_logprobs(
                        output.token_ids[previous_num_tokens[i]:],
                        output.logprobs[previous_num_tokens[i]:],
                        len(previous_texts[i]))
                else:
                    logprobs = None
                previous_texts[i] = output.text
                previous_num_tokens[i] = len(output.token_ids)
                response_json = create_stream_response_json(
                    index=i,
                    text=delta_text,
                    logprobs=logprobs,
                )
                yield f"data: {response_json}\n\n"
                if output.finish_reason is not None:
                    logprobs = LogProbs() if request.logprobs is not None else None
                    response_json = create_stream_response_json(
                        index=i,
                        text="",
                        logprobs=logprobs,
                        finish_reason=output.finish_reason,
                    )
                    yield f"data: {response_json}\n\n"
            yield "data: [DONE]\n\n"

    # Streaming response
    if stream:
        return StreamingResponse(completion_stream_generator(),
                                 media_type="text/event-stream")

    # Non-streaming response
    final_res: RequestOutput = None
    async for res in result_generator:
        final_res = res
    assert final_res is not None
    choices = []
    for output in final_res.outputs:
        if request.logprobs is not None:
            logprobs = create_logprobs(output.token_ids, output.logprobs)
        else:
            logprobs = None
        choice_data = CompletionResponseChoice(
            index=output.index,
            text=output.text,
            logprobs=logprobs,
            finish_reason=output.finish_reason,
        )
        choices.append(choice_data)

    num_prompt_tokens = len(final_res.prompt_token_ids)
    num_generated_tokens = sum(len(output.token_ids)
                               for output in final_res.outputs)
    usage = UsageInfo(
        prompt_tokens=num_prompt_tokens,
        completion_tokens=num_generated_tokens,
        total_tokens=num_prompt_tokens + num_generated_tokens,
    )
    response = CompletionResponse(
        id=request_id,
        created=created_time,
        model=model_name,
        choices=choices,
        usage=usage,
    )

    if request.stream:
        # When user requests streaming but we don't stream, we still need to
        # return a streaming response with a single event.
        response_json = response.json(ensure_ascii=False)
        async def fake_stream_generator() -> AsyncGenerator[str, None]:
            yield f"data: {response_json}\n\n"
            yield "data: [DONE]\n\n"
        return StreamingResponse(fake_stream_generator(),
                                 media_type="text/event-stream")

    return response


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="CacheFlow OpenAI-Compatible RESTful API server."
    )
    parser.add_argument("--host", type=str, default="localhost", help="host name")
    parser.add_argument("--port", type=int, default=8000, help="port number")
    parser.add_argument(
        "--allow-credentials", action="store_true", help="allow credentials"
    )
    parser.add_argument(
        "--allowed-origins", type=json.loads, default=["*"], help="allowed origins"
    )
    parser.add_argument(
        "--allowed-methods", type=json.loads, default=["*"], help="allowed methods"
    )
    parser.add_argument(
        "--allowed-headers", type=json.loads, default=["*"], help="allowed headers"
    )
    parser.add_argument("--served-model-name", type=str, default=None,
                        help="The model name used in the API. If not specified, "
                             "the model name will be the same as the "
                             "huggingface name.")
    parser = ServerArgs.add_cli_args(parser)
    args = parser.parse_args()

    app.add_middleware(
        CORSMiddleware,
        allow_origins=args.allowed_origins,
        allow_credentials=args.allow_credentials,
        allow_methods=args.allowed_methods,
        allow_headers=args.allowed_headers,
    )

    logger.info(f"args: {args}")

    served_model = args.served_model_name or args.model

    server_args = ServerArgs.from_cli_args(args)
    server = AsyncLLMServer.from_server_args(server_args)

    # A separate tokenizer to map token IDs to strings.
    tokenizer = get_tokenizer(args.model)

    uvicorn.run(app, host=args.host, port=args.port, log_level="info")