test_detokenize.py 7.83 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from typing import Dict, List

import pytest
from transformers import AutoTokenizer

from vllm.sequence import Logprob, SamplingParams, Sequence, SequenceGroup
from vllm.transformers_utils.detokenizer import (Detokenizer,
                                                 detokenize_incrementally)
from vllm.transformers_utils.tokenizer_group import get_tokenizer_group

TRUTH = [
    "Hello here, this is a simple test",
    "vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. It is designed to be used in production environments, where inference and serving",  # noqa
    "我很感谢你的热情"
]
TOKENIZERS = [
    "facebook/opt-125m",
    "gpt2",
    "bigcode/tiny_starcoder_py",
    "EleutherAI/gpt-j-6b",
    "EleutherAI/pythia-70m",
    "bigscience/bloom-560m",
    "mosaicml/mpt-7b",
    "tiiuae/falcon-7b",
    "meta-llama/Llama-2-7b-hf",
    "codellama/CodeLlama-7b-hf",
]


def _run_incremental_decode(tokenizer, all_input_ids,
                            skip_special_tokens: bool, starting_index: int):
    decoded_text = ""
    offset = 0
    token_offset = 0
    prev_tokens = None
    for i in range(starting_index, len(all_input_ids)):
        new_tokens, text, offset, token_offset = detokenize_incrementally(
            tokenizer,
            all_input_ids[:i + 1],
            prev_tokens,
            offset,
            token_offset,
            skip_special_tokens=skip_special_tokens)
        decoded_text += text
        if prev_tokens is None:
            prev_tokens = new_tokens
        else:
            prev_tokens += new_tokens
    return decoded_text


@pytest.mark.parametrize("truth", TRUTH)
@pytest.mark.parametrize("with_prompt", [True, False])
@pytest.mark.parametrize("tokenizer_id", TOKENIZERS)
@pytest.mark.parametrize("skip_special_tokens", (True, False))
def test_decode_streaming(tokenizer_id, truth, with_prompt,
                          skip_special_tokens):
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
    if with_prompt:
        truth_tokens = tokenizer(truth, add_special_tokens=False)["input_ids"]
        prompt_input_ids = truth_tokens[:len(truth) // 2]
        generated_input_ids = truth_tokens[len(truth) // 2:]
        all_input_ids = prompt_input_ids + generated_input_ids
        starting_index = len(prompt_input_ids)
        prompt = tokenizer.decode(prompt_input_ids,
                                  skip_special_tokens=skip_special_tokens)
        generated = truth[len(prompt):]
    else:
        generated = truth
        starting_index = 0
        all_input_ids = tokenizer(truth, add_special_tokens=False)["input_ids"]
    if skip_special_tokens:
        if tokenizer.bos_token_id is not None:
            all_input_ids = [tokenizer.bos_token_id] + all_input_ids
            starting_index += 1
        all_input_ids = all_input_ids + [tokenizer.eos_token_id]

    decoded_text = _run_incremental_decode(
        tokenizer,
        all_input_ids,
        skip_special_tokens=skip_special_tokens,
        starting_index=starting_index)

    assert decoded_text == generated

    decoded_text = _run_incremental_decode(
        tokenizer, [len(tokenizer)],
        skip_special_tokens=skip_special_tokens,
        starting_index=starting_index)

    assert decoded_text == ''


@pytest.fixture
def detokenizer(tokenizer_name: str) -> Detokenizer:
    init_kwargs = dict(
        tokenizer_id=tokenizer_name,
        enable_lora=False,
        max_num_seqs=100,
        max_input_length=None,
        tokenizer_mode="auto",
        trust_remote_code=False,
        revision=None,
    )

    tokenizer_group = get_tokenizer_group(
        None,
        **init_kwargs,
    )

    return Detokenizer(tokenizer_group)


@pytest.fixture(name="complete_sequence_token_ids")
def create_complete_sequence_token_ids(complete_sequence: str,
                                       tokenizer_name: str) -> List[int]:
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
    complete_sequence_token_ids = tokenizer(complete_sequence)["input_ids"]
    return complete_sequence_token_ids


def create_sequence(prompt_token_ids=None):
    prompt_token_ids = prompt_token_ids or [1]
    return Sequence(
        seq_id=0,
        prompt="<s>",
        prompt_token_ids=prompt_token_ids,
        block_size=16,
    )


def create_dummy_logprobs(
        complete_sequence_token_ids: List[int]) -> List[Dict[int, Logprob]]:
    return [{
        token_id: Logprob(logprob=0.0),
        token_id + 1: Logprob(logprob=0.1)
    } for token_id in complete_sequence_token_ids]


@pytest.mark.parametrize("complete_sequence", TRUTH)
@pytest.mark.parametrize("tokenizer_name", TOKENIZERS)
@pytest.mark.parametrize("skip_special_tokens", [True, False])
def test_decode_sequence_logprobs(complete_sequence: str,
                                  complete_sequence_token_ids: List[int],
                                  detokenizer: Detokenizer,
                                  skip_special_tokens: bool):
    """Verify Detokenizer decodes logprobs correctly."""
    sampling_params = SamplingParams(skip_special_tokens=skip_special_tokens,
                                     logprobs=2)

    # Run sequentially.
    seq = create_sequence()
    dummy_logprobs = create_dummy_logprobs(complete_sequence_token_ids)
    sequential_logprobs_text_chosen_token = []
    sequential_logprobs_text_other_token = []
    for new_token, logprobs in zip(complete_sequence_token_ids,
                                   dummy_logprobs):
        seq.append_token_id(new_token, logprobs)
        detokenizer.decode_sequence_inplace(seq, sampling_params)
        sequential_logprobs_text_chosen_token.append(
            seq.output_logprobs[-1][new_token].decoded_token)
        sequential_logprobs_text_other_token.append(
            seq.output_logprobs[-1][new_token + 1].decoded_token)
    sequential_result = seq.output_text

    assert sequential_result == "".join(sequential_logprobs_text_chosen_token)
    assert sequential_result != "".join(sequential_logprobs_text_other_token)

    if skip_special_tokens:
        # Text for logprobs for the chosen token should be the same as the
        # generated text. Note that this will only be true if we skip
        # special tokens.
        assert sequential_result == complete_sequence


@pytest.mark.parametrize("complete_sequence", TRUTH)
@pytest.mark.parametrize("tokenizer_name", TOKENIZERS)
@pytest.mark.parametrize("skip_special_tokens", [True])
def test_decode_prompt_logprobs(complete_sequence: str,
                                complete_sequence_token_ids: List[int],
                                detokenizer: Detokenizer,
                                skip_special_tokens: bool):
    """Verify Detokenizer decodes prompt logprobs correctly."""
    sampling_params = SamplingParams(skip_special_tokens=skip_special_tokens,
                                     prompt_logprobs=1)

    # Run sequentially.
    seq = create_sequence(complete_sequence_token_ids)
    seq_group = SequenceGroup(request_id="1",
                              seqs=[seq],
                              sampling_params=sampling_params,
                              arrival_time=0.0)
    dummy_logprobs = create_dummy_logprobs(complete_sequence_token_ids)
    detokenizer.decode_prompt_logprobs_inplace(seq_group, dummy_logprobs)
    decoded_prompt_logprobs = dummy_logprobs

    if skip_special_tokens:
        # Text for logprobs for the chosen token should be the same as the
        # prompt text. Note that this will only be true if we skip
        # special tokens.
        assert complete_sequence == "".join([
            logprobs[token_id].decoded_token for token_id, logprobs in zip(
                complete_sequence_token_ids, decoded_prompt_logprobs)
        ])
        assert complete_sequence != "".join([
            logprobs[token_id + 1].decoded_token for token_id, logprobs in zip(
                complete_sequence_token_ids, decoded_prompt_logprobs)
        ])