test_prefix_prefill.py 7.03 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import random
import time

import pytest
import torch
from xformers import ops as xops
from xformers.ops.fmha.attn_bias import BlockDiagonalCausalFromBottomRightMask

from vllm.attention.ops.prefix_prefill import context_attention_fwd

NUM_HEADS = [64]
NUM_QUERIES_PER_KV = [1, 8, 64]
HEAD_SIZES = [128]
DTYPES = [torch.float16]
CUDA_DEVICES = [
    f"cuda:{i}" for i in range(1 if torch.cuda.device_count() == 1 else 2)
]


@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("num_queries_per_kv", NUM_QUERIES_PER_KV)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@torch.inference_mode()
def test_contexted_kv_attention(
    num_heads: int,
    num_queries_per_kv: int,
    head_size: int,
    dtype: torch.dtype,
    device: str,
) -> None:
    random.seed(0)
    torch.manual_seed(0)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(0)
    torch.set_default_device(device)

    # Need this, otherwise when we capture the graph the process
    # for GPU 1 would run on both GPU0 and GPU1 and things would hang
    #
    # see also similar issue: https://github.com/Dao-AILab/flash-attention/issues/523
    torch.cuda.set_device(device)

    MAX_SEQ_LEN = 1024
    MAX_CTX_LEN = 1024
    BS = 10
    cache_size = 640
    block_size = 32
    max_block_per_request = 64
    subquery_lens = [random.randint(16, MAX_SEQ_LEN) for _ in range(BS)]
    ctx_lens = [random.randint(16, MAX_CTX_LEN) for _ in range(BS)]
    seq_lens = [a + b for a, b in zip(subquery_lens, ctx_lens)]
    num_kv_heads = num_heads // num_queries_per_kv

    num_tokens = sum(subquery_lens)
    query = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)
    query.uniform_(-1e-3, 1e-3)
    output = torch.empty(num_tokens, num_heads, head_size, dtype=dtype)

    kv = torch.empty(sum(seq_lens), 2, num_kv_heads, head_size, dtype=dtype)
    kv.uniform_(-1e-3, 1e-3)
    key, value = kv.unbind(dim=1)

    k_cache = torch.zeros(cache_size,
                          block_size,
                          num_kv_heads,
                          head_size,
                          dtype=dtype)
    v_cache = torch.zeros(cache_size,
                          block_size,
                          num_kv_heads,
                          head_size,
                          dtype=dtype)
    k = torch.zeros(sum(subquery_lens), num_kv_heads, head_size, dtype=dtype)
    v = torch.zeros(sum(subquery_lens), num_kv_heads, head_size, dtype=dtype)
    values = torch.arange(0, cache_size, dtype=torch.long)
    values = values[torch.randperm(cache_size)]
    block_table = values[:BS * max_block_per_request].view(
        BS, max_block_per_request)
    b_seq_len = torch.tensor(seq_lens, dtype=torch.long)
    b_ctx_len = torch.tensor(ctx_lens, dtype=torch.long)
    b_start_loc = torch.cumsum(torch.tensor([0] + subquery_lens[:-1],
                                            dtype=torch.long),
                               dim=0)
    max_input_len = MAX_SEQ_LEN
    # copy kv to cache
    b_seq_start_loc = torch.cumsum(torch.tensor([0] + seq_lens[:-1],
                                                dtype=torch.long),
                                   dim=0)
    for i in range(BS):
        for j in range(subquery_lens[i]):
            k[b_start_loc[i] + j].copy_(key[b_seq_start_loc[i] + b_ctx_len[i] +
                                            j])
            v[b_start_loc[i] + j].copy_(value[b_seq_start_loc[i] +
                                              b_ctx_len[i] + j])
        cur_ctx = 0
        block_id = 0
        while cur_ctx < b_ctx_len[i]:
            start_loc = b_seq_start_loc[i] + cur_ctx
            if cur_ctx + block_size > b_ctx_len[i]:
                end_loc = b_seq_start_loc[i] + b_ctx_len[i]
            else:
                end_loc = start_loc + block_size
            start_slot = block_table[i, block_id] * block_size
            end_slot = start_slot + end_loc - start_loc
            k_cache.view(-1, num_kv_heads,
                         head_size)[start_slot:end_slot].copy_(
                             key[start_loc:end_loc])
            v_cache.view(-1, num_kv_heads,
                         head_size)[start_slot:end_slot].copy_(
                             value[start_loc:end_loc])
            cur_ctx += block_size
            block_id += 1
    # transpose K_cache[num_blocks, block_size, num_kv_heads, head_size]
    # to K_cache[num_blocks, num_kv_heads, head_size/8, block_size, 8]
    k_cache = k_cache.view(-1, block_size, num_kv_heads, head_size // 8,
                           8).permute(0, 2, 3, 1, 4).contiguous()
    # transpose V_cache[num_blocks, block_size, num_kv_heads, head_size]
    # to V_cache[num_blocks, num_kv_heads, head_size, block_size]
    v_cache = v_cache.view(-1, block_size, num_kv_heads,
                           head_size).permute(0, 2, 3, 1).contiguous()

    # Warm up the Triton kernel by calling it once before actually measuring
    # generation time
    context_attention_fwd(query, k, v, output, k_cache, v_cache, block_table,
                          b_start_loc, b_seq_len, b_ctx_len, max_input_len)
    torch.cuda.synchronize()
    start_time = time.time()
    context_attention_fwd(query, k, v, output, k_cache, v_cache, block_table,
                          b_start_loc, b_seq_len, b_ctx_len, max_input_len)
    torch.cuda.synchronize()
    end_time = time.time()
    print(f"triton Time: {(end_time - start_time)*1000:.2f} ms")

    scale = float(1.0 / (head_size**0.5))

    attn_op = xops.fmha.cutlass.FwOp()

    if num_kv_heads != num_heads:
        # As of Nov 2023, xformers only supports MHA. For MQA/GQA,
        # project the key and value tensors to the desired number of
        # heads.
        #
        # see also: vllm/model_executor/layers/attention.py
        query = query.view(query.shape[0], num_kv_heads, num_queries_per_kv,
                           query.shape[-1])
        key = key[:, :, None, :].expand(key.shape[0], num_kv_heads,
                                        num_queries_per_kv, key.shape[-1])
        value = value[:, :,
                      None, :].expand(value.shape[0], num_kv_heads,
                                      num_queries_per_kv, value.shape[-1])
    query = query.unsqueeze(0)
    key = key.unsqueeze(0)
    value = value.unsqueeze(0)

    attn_bias = BlockDiagonalCausalFromBottomRightMask.from_seqlens(
        subquery_lens, seq_lens)
    output_ref = xops.memory_efficient_attention_forward(
        query,
        key,
        value,
        attn_bias=attn_bias,
        p=0.0,
        scale=scale,
        op=attn_op,
    )
    torch.cuda.synchronize()
    start_time = time.time()
    output_ref = xops.memory_efficient_attention_forward(
        query,
        key,
        value,
        attn_bias=attn_bias,
        p=0.0,
        scale=scale,
        op=attn_op,
    )
    torch.cuda.synchronize()
    end_time = time.time()
    print(f"xformers Time: {(end_time - start_time)*1000:.2f} ms")
    output_ref = output_ref.reshape(output.shape)
    assert torch.allclose(output_ref, output, atol=1e-6, rtol=0)