test_openai_server.py 27.9 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
# imports for guided decoding tests
import json
import os
import re
import subprocess
import sys
import time

import jsonschema
import openai  # use the official client for correctness check
import pytest
# using Ray for overall ease of process management, parallel requests,
# and debugging.
import ray
import requests
# downloading lora to test lora requests
from huggingface_hub import snapshot_download

from vllm.transformers_utils.tokenizer import get_tokenizer

MAX_SERVER_START_WAIT_S = 600  # wait for server to start for 60 seconds
# any model with a chat template should work here
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
# technically this needs Mistral-7B-v0.1 as base, but we're not testing
# generation quality here
LORA_NAME = "typeof/zephyr-7b-beta-lora"

TEST_SCHEMA = {
    "type": "object",
    "properties": {
        "name": {
            "type": "string"
        },
        "age": {
            "type": "integer"
        },
        "skills": {
            "type": "array",
            "items": {
                "type": "string",
                "maxLength": 10
            },
            "minItems": 3
        },
        "work history": {
            "type": "array",
            "items": {
                "type": "object",
                "properties": {
                    "company": {
                        "type": "string"
                    },
                    "duration": {
                        "type": "string"
                    },
                    "position": {
                        "type": "string"
                    }
                },
                "required": ["company", "position"]
            }
        }
    },
    "required": ["name", "age", "skills", "work history"]
}

TEST_REGEX = (r"((25[0-5]|(2[0-4]|1\d|[1-9]|)\d)\.){3}"
              r"(25[0-5]|(2[0-4]|1\d|[1-9]|)\d)")

TEST_CHOICE = [
    "Python", "Java", "JavaScript", "C++", "C#", "PHP", "TypeScript", "Ruby",
    "Swift", "Kotlin"
]

pytestmark = pytest.mark.asyncio


@ray.remote(num_gpus=1)
class ServerRunner:

    def __init__(self, args):
        env = os.environ.copy()
        env["PYTHONUNBUFFERED"] = "1"
        self.proc = subprocess.Popen(
            ["python3", "-m", "vllm.entrypoints.openai.api_server"] + args,
            env=env,
            stdout=sys.stdout,
            stderr=sys.stderr,
        )
        self._wait_for_server()

    def ready(self):
        return True

    def _wait_for_server(self):
        # run health check
        start = time.time()
        while True:
            try:
                if requests.get(
                        "http://localhost:8000/health").status_code == 200:
                    break
            except Exception as err:
                if self.proc.poll() is not None:
                    raise RuntimeError("Server exited unexpectedly.") from err

                time.sleep(0.5)
                if time.time() - start > MAX_SERVER_START_WAIT_S:
                    raise RuntimeError(
                        "Server failed to start in time.") from err

    def __del__(self):
        if hasattr(self, "proc"):
            self.proc.terminate()


@pytest.fixture(scope="session")
def zephyr_lora_files():
    return snapshot_download(repo_id=LORA_NAME)


@pytest.fixture(scope="session")
def server(zephyr_lora_files):
    ray.init()
    server_runner = ServerRunner.remote([
        "--model",
        MODEL_NAME,
        # use half precision for speed and memory savings in CI environment
        "--dtype",
        "bfloat16",
        "--max-model-len",
        "8192",
        "--enforce-eager",
        # lora config below
        "--enable-lora",
        "--lora-modules",
        f"zephyr-lora={zephyr_lora_files}",
        f"zephyr-lora2={zephyr_lora_files}",
        "--max-lora-rank",
        "64",
        "--max-cpu-loras",
        "2",
        "--max-num-seqs",
        "128",
    ])
    ray.get(server_runner.ready.remote())
    yield server_runner
    ray.shutdown()


@pytest.fixture(scope="session")
def client():
    client = openai.AsyncOpenAI(
        base_url="http://localhost:8000/v1",
        api_key="token-abc123",
    )
    yield client


async def test_check_models(server, client: openai.AsyncOpenAI):
    models = await client.models.list()
    models = models.data
    served_model = models[0]
    lora_models = models[1:]
    assert served_model.id == MODEL_NAME
    assert all(model.root == MODEL_NAME for model in models)
    assert lora_models[0].id == "zephyr-lora"
    assert lora_models[1].id == "zephyr-lora2"


@pytest.mark.parametrize(
    # first test base model, then test loras
    "model_name",
    [MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_single_completion(server, client: openai.AsyncOpenAI,
                                 model_name: str):
    completion = await client.completions.create(model=model_name,
                                                 prompt="Hello, my name is",
                                                 max_tokens=5,
                                                 temperature=0.0)

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 1
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5
    assert completion.choices[0].finish_reason == "length"
    assert completion.usage == openai.types.CompletionUsage(
        completion_tokens=5, prompt_tokens=6, total_tokens=11)

    # test using token IDs
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=[0, 0, 0, 0, 0],
        max_tokens=5,
        temperature=0.0,
    )
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5


@pytest.mark.parametrize(
    # first test base model, then test loras
    "model_name",
    [MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_zero_logprobs(server, client: openai.AsyncOpenAI,
                             model_name: str):
    # test using token IDs
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=[0, 0, 0, 0, 0],
        max_tokens=5,
        temperature=0.0,
        logprobs=0,
    )
    choice = completion.choices[0]
    assert choice.logprobs is not None
    assert choice.logprobs.token_logprobs is not None
    assert choice.logprobs.top_logprobs is None


@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_single_chat_session(server, client: openai.AsyncOpenAI,
                                   model_name: str):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "what is 1+1?"
    }]

    # test single completion
    chat_completion = await client.chat.completions.create(model=model_name,
                                                           messages=messages,
                                                           max_tokens=10,
                                                           logprobs=True,
                                                           top_logprobs=5)
    assert chat_completion.id is not None
    assert chat_completion.choices is not None and len(
        chat_completion.choices) == 1
    assert chat_completion.choices[0].message is not None
    assert chat_completion.choices[0].logprobs is not None
    assert chat_completion.choices[0].logprobs.top_logprobs is not None
    assert len(chat_completion.choices[0].logprobs.top_logprobs[0]) == 5
    message = chat_completion.choices[0].message
    assert message.content is not None and len(message.content) >= 10
    assert message.role == "assistant"
    messages.append({"role": "assistant", "content": message.content})

    # test multi-turn dialogue
    messages.append({"role": "user", "content": "express your result in json"})
    chat_completion = await client.chat.completions.create(
        model=model_name,
        messages=messages,
        max_tokens=10,
    )
    message = chat_completion.choices[0].message
    assert message.content is not None and len(message.content) >= 0


@pytest.mark.parametrize("model_name", [MODEL_NAME])
async def test_too_many_logprobs(server, client: openai.AsyncOpenAI,
                                 model_name: str):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "what is 1+1?"
    }]

    # Default max_logprobs is 5, so this should raise an error
    with pytest.raises((openai.BadRequestError, openai.APIError)):
        stream = await client.chat.completions.create(model=model_name,
                                                      messages=messages,
                                                      max_tokens=10,
                                                      logprobs=True,
                                                      top_logprobs=10,
                                                      stream=True)
        async for chunk in stream:
            ...

    with pytest.raises(openai.BadRequestError):
        await client.chat.completions.create(model=model_name,
                                             messages=messages,
                                             max_tokens=10,
                                             logprobs=True,
                                             top_logprobs=10,
                                             stream=False)

    with pytest.raises((openai.BadRequestError, openai.APIError)):
        stream = await client.completions.create(model=model_name,
                                                 prompt="Test",
                                                 max_tokens=10,
                                                 logprobs=10,
                                                 stream=True)
        async for chunk in stream:
            ...

    with pytest.raises(openai.BadRequestError):
        await client.completions.create(model=model_name,
                                        prompt="Test",
                                        max_tokens=10,
                                        logprobs=10,
                                        stream=False)

    # the server should still work afterwards
    chat_completion = await client.chat.completions.create(model=model_name,
                                                           messages=messages,
                                                           max_tokens=10,
                                                           stream=False)
    message = chat_completion.choices[0].message
    assert message.content is not None and len(message.content) >= 0


@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_completion_streaming(server, client: openai.AsyncOpenAI,
                                    model_name: str):
    prompt = "What is an LLM?"

    single_completion = await client.completions.create(
        model=model_name,
        prompt=prompt,
        max_tokens=5,
        temperature=0.0,
    )
    single_output = single_completion.choices[0].text
    single_usage = single_completion.usage

    stream = await client.completions.create(model=model_name,
                                             prompt=prompt,
                                             max_tokens=5,
                                             temperature=0.0,
                                             stream=True)
    chunks = []
    finish_reason_count = 0
    async for chunk in stream:
        chunks.append(chunk.choices[0].text)
        if chunk.choices[0].finish_reason is not None:
            finish_reason_count += 1
    # finish reason should only return in last block
    assert finish_reason_count == 1
    assert chunk.choices[0].finish_reason == "length"
    assert chunk.choices[0].text
    assert chunk.usage == single_usage
    assert "".join(chunks) == single_output


@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_chat_streaming(server, client: openai.AsyncOpenAI,
                              model_name: str):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role": "user",
        "content": "what is 1+1?"
    }]

    # test single completion
    chat_completion = await client.chat.completions.create(
        model=model_name,
        messages=messages,
        max_tokens=10,
        temperature=0.0,
    )
    output = chat_completion.choices[0].message.content
    stop_reason = chat_completion.choices[0].finish_reason

    # test streaming
    stream = await client.chat.completions.create(
        model=model_name,
        messages=messages,
        max_tokens=10,
        temperature=0.0,
        stream=True,
    )
    chunks = []
    finish_reason_count = 0
    async for chunk in stream:
        delta = chunk.choices[0].delta
        if delta.role:
            assert delta.role == "assistant"
        if delta.content:
            chunks.append(delta.content)
        if chunk.choices[0].finish_reason is not None:
            finish_reason_count += 1
    # finish reason should only return in last block
    assert finish_reason_count == 1
    assert chunk.choices[0].finish_reason == stop_reason
    assert delta.content
    assert "".join(chunks) == output


@pytest.mark.parametrize(
    # just test 1 lora hereafter
    "model_name",
    [MODEL_NAME, "zephyr-lora"],
)
async def test_batch_completions(server, client: openai.AsyncOpenAI,
                                 model_name: str):
    # test simple list
    batch = await client.completions.create(
        model=model_name,
        prompt=["Hello, my name is", "Hello, my name is"],
        max_tokens=5,
        temperature=0.0,
    )
    assert len(batch.choices) == 2
    assert batch.choices[0].text == batch.choices[1].text

    # test n = 2
    batch = await client.completions.create(
        model=model_name,
        prompt=["Hello, my name is", "Hello, my name is"],
        n=2,
        max_tokens=5,
        temperature=0.0,
        extra_body=dict(
            # NOTE: this has to be true for n > 1 in vLLM, but not necessary
            # for official client.
            use_beam_search=True),
    )
    assert len(batch.choices) == 4
    assert batch.choices[0].text != batch.choices[
        1].text, "beam search should be different"
    assert batch.choices[0].text == batch.choices[
        2].text, "two copies of the same prompt should be the same"
    assert batch.choices[1].text == batch.choices[
        3].text, "two copies of the same prompt should be the same"

    # test streaming
    batch = await client.completions.create(
        model=model_name,
        prompt=["Hello, my name is", "Hello, my name is"],
        max_tokens=5,
        temperature=0.0,
        stream=True,
    )
    texts = [""] * 2
    async for chunk in batch:
        assert len(chunk.choices) == 1
        choice = chunk.choices[0]
        texts[choice.index] += choice.text
    assert texts[0] == texts[1]


async def test_logits_bias(server, client: openai.AsyncOpenAI):
    prompt = "Hello, my name is"
    max_tokens = 5
    tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)

    # Test exclusive selection
    token_id = 1000
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=0.0,
        logit_bias={str(token_id): 100},
        seed=42,
    )
    assert completion.choices[0].text is not None and len(
        completion.choices[0].text) >= 5
    response_tokens = tokenizer(completion.choices[0].text,
                                add_special_tokens=False)["input_ids"]
    expected_tokens = tokenizer(tokenizer.decode([token_id] * 5),
                                add_special_tokens=False)["input_ids"]
    assert all([
        response == expected
        for response, expected in zip(response_tokens, expected_tokens)
    ])

    # Test ban
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=0.0,
    )
    response_tokens = tokenizer(completion.choices[0].text,
                                add_special_tokens=False)["input_ids"]
    first_response = completion.choices[0].text
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=prompt,
        max_tokens=max_tokens,
        temperature=0.0,
        logit_bias={str(token): -100
                    for token in response_tokens},
    )
    assert first_response != completion.choices[0].text


@pytest.mark.parametrize("guided_decoding_backend",
                         ["outlines", "lm-format-enforcer"])
async def test_guided_json_completion(server, client: openai.AsyncOpenAI,
                                      guided_decoding_backend: str):
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=f"Give an example JSON for an employee profile "
        f"that fits this schema: {TEST_SCHEMA}",
        n=3,
        temperature=1.0,
        max_tokens=500,
        extra_body=dict(guided_json=TEST_SCHEMA,
                        guided_decoding_backend=guided_decoding_backend))

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 3
    for i in range(3):
        assert completion.choices[i].text is not None
        output_json = json.loads(completion.choices[i].text)
        jsonschema.validate(instance=output_json, schema=TEST_SCHEMA)


@pytest.mark.parametrize("guided_decoding_backend",
                         ["outlines", "lm-format-enforcer"])
async def test_guided_json_chat(server, client: openai.AsyncOpenAI,
                                guided_decoding_backend: str):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role":
        "user",
        "content":
        f"Give an example JSON for an employee profile that "
        f"fits this schema: {TEST_SCHEMA}"
    }]
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=1000,
        extra_body=dict(guided_json=TEST_SCHEMA,
                        guided_decoding_backend=guided_decoding_backend))
    message = chat_completion.choices[0].message
    assert message.content is not None
    json1 = json.loads(message.content)
    jsonschema.validate(instance=json1, schema=TEST_SCHEMA)

    messages.append({"role": "assistant", "content": message.content})
    messages.append({
        "role":
        "user",
        "content":
        "Give me another one with a different name and age"
    })
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=1000,
        extra_body=dict(guided_json=TEST_SCHEMA,
                        guided_decoding_backend=guided_decoding_backend))
    message = chat_completion.choices[0].message
    assert message.content is not None
    json2 = json.loads(message.content)
    jsonschema.validate(instance=json2, schema=TEST_SCHEMA)
    assert json1["name"] != json2["name"]
    assert json1["age"] != json2["age"]


@pytest.mark.parametrize("guided_decoding_backend",
                         ["outlines", "lm-format-enforcer"])
async def test_guided_regex_completion(server, client: openai.AsyncOpenAI,
                                       guided_decoding_backend: str):
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=f"Give an example IPv4 address with this regex: {TEST_REGEX}",
        n=3,
        temperature=1.0,
        max_tokens=20,
        extra_body=dict(guided_regex=TEST_REGEX,
                        guided_decoding_backend=guided_decoding_backend))

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 3
    for i in range(3):
        assert completion.choices[i].text is not None
        assert re.fullmatch(TEST_REGEX, completion.choices[i].text) is not None


@pytest.mark.parametrize("guided_decoding_backend",
                         ["outlines", "lm-format-enforcer"])
async def test_guided_regex_chat(server, client: openai.AsyncOpenAI,
                                 guided_decoding_backend: str):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role":
        "user",
        "content":
        f"Give an example IP address with this regex: {TEST_REGEX}"
    }]
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=20,
        extra_body=dict(guided_regex=TEST_REGEX,
                        guided_decoding_backend=guided_decoding_backend))
    ip1 = chat_completion.choices[0].message.content
    assert ip1 is not None
    assert re.fullmatch(TEST_REGEX, ip1) is not None

    messages.append({"role": "assistant", "content": ip1})
    messages.append({"role": "user", "content": "Give me a different one"})
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=20,
        extra_body=dict(guided_regex=TEST_REGEX,
                        guided_decoding_backend=guided_decoding_backend))
    ip2 = chat_completion.choices[0].message.content
    assert ip2 is not None
    assert re.fullmatch(TEST_REGEX, ip2) is not None
    assert ip1 != ip2


@pytest.mark.parametrize("guided_decoding_backend",
                         ["outlines", "lm-format-enforcer"])
async def test_guided_choice_completion(server, client: openai.AsyncOpenAI,
                                        guided_decoding_backend: str):
    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt="The best language for type-safe systems programming is ",
        n=2,
        temperature=1.0,
        max_tokens=10,
        extra_body=dict(guided_choice=TEST_CHOICE,
                        guided_decoding_backend=guided_decoding_backend))

    assert completion.id is not None
    assert completion.choices is not None and len(completion.choices) == 2
    for i in range(2):
        assert completion.choices[i].text in TEST_CHOICE


@pytest.mark.parametrize("guided_decoding_backend",
                         ["outlines", "lm-format-enforcer"])
async def test_guided_choice_chat(server, client: openai.AsyncOpenAI,
                                  guided_decoding_backend: str):
    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role":
        "user",
        "content":
        "The best language for type-safe systems programming is "
    }]
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
        extra_body=dict(guided_choice=TEST_CHOICE,
                        guided_decoding_backend=guided_decoding_backend))
    choice1 = chat_completion.choices[0].message.content
    assert choice1 in TEST_CHOICE

    messages.append({"role": "assistant", "content": choice1})
    messages.append({
        "role": "user",
        "content": "I disagree, pick another one"
    })
    chat_completion = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=messages,
        max_tokens=10,
        extra_body=dict(guided_choice=TEST_CHOICE,
                        guided_decoding_backend=guided_decoding_backend))
    choice2 = chat_completion.choices[0].message.content
    assert choice2 in TEST_CHOICE
    assert choice1 != choice2


@pytest.mark.parametrize("guided_decoding_backend",
                         ["outlines", "lm-format-enforcer"])
async def test_guided_decoding_type_error(server, client: openai.AsyncOpenAI,
                                          guided_decoding_backend: str):
    with pytest.raises(openai.BadRequestError):
        _ = await client.completions.create(
            model=MODEL_NAME,
            prompt="Give an example JSON that fits this schema: 42",
            extra_body=dict(guided_json=42,
                            guided_decoding_backend=guided_decoding_backend))

    messages = [{
        "role": "system",
        "content": "you are a helpful assistant"
    }, {
        "role":
        "user",
        "content":
        "The best language for type-safe systems programming is "
    }]
    with pytest.raises(openai.BadRequestError):
        _ = await client.chat.completions.create(model=MODEL_NAME,
                                                 messages=messages,
                                                 extra_body=dict(guided_regex={
                                                     1: "Python",
                                                     2: "C++"
                                                 }))

    with pytest.raises(openai.BadRequestError):
        _ = await client.completions.create(
            model=MODEL_NAME,
            prompt="Give an example string that fits this regex",
            extra_body=dict(guided_regex=TEST_REGEX, guided_json=TEST_SCHEMA))


async def test_response_format_json_object(server, client: openai.AsyncOpenAI):
    resp = await client.chat.completions.create(
        model=MODEL_NAME,
        messages=[{
            "role":
            "user",
            "content": ('what is 1+1? please respond with a JSON object, '
                        'the format is {"result": 2}')
        }],
        response_format={"type": "json_object"})

    content = resp.choices[0].message.content
    loaded = json.loads(content)
    assert loaded == {"result": 2}, loaded


async def test_guided_grammar(server, client: openai.AsyncOpenAI):
    simple_sql_grammar = """
start: select_statement

select_statement: "SELECT" column "from" table "where" condition

column: "col_1" | "col_2"
table: "table_1" | "table_2"
condition: column "=" number

number: "1" | "2"
"""

    completion = await client.completions.create(
        model=MODEL_NAME,
        prompt=("Generate a sql state that select col_1 from "
                "table_1 where it is equals to 1"),
        temperature=1.0,
        max_tokens=500,
        extra_body=dict(guided_grammar=simple_sql_grammar))

    content = completion.choices[0].text

    # use Lark to parse the output, and make sure it's a valid parse tree
    from lark import Lark
    parser = Lark(simple_sql_grammar)
    parser.parse(content)

    # remove spaces for comparison b/c we removed them in the grammar
    ground_truth = "SELECT col_1 from table_1 where col_1 = 1".replace(" ", "")

    assert content.strip() == ground_truth


@pytest.mark.parametrize(
    # first test base model, then test loras
    "model_name",
    [MODEL_NAME, "zephyr-lora", "zephyr-lora2"],
)
async def test_echo_logprob_completion(server, client: openai.AsyncOpenAI,
                                       model_name: str):
    tokenizer = get_tokenizer(tokenizer_name=MODEL_NAME)
    # test using text and token IDs
    for prompt in ("Hello, my name is", [0, 0, 0, 0, 0]):
        completion = await client.completions.create(model=model_name,
                                                     prompt=prompt,
                                                     max_tokens=5,
                                                     temperature=0.0,
                                                     echo=True,
                                                     logprobs=1)

        prompt_text = tokenizer.decode(prompt) if isinstance(prompt,
                                                             list) else prompt
        assert (completion.choices[0].text is not None
                and re.search(r"^" + prompt_text, completion.choices[0].text))
        logprobs = completion.choices[0].logprobs
        assert logprobs is not None
        assert len(logprobs.text_offset) > 5
        assert (len(logprobs.token_logprobs) > 5
                and logprobs.token_logprobs[0] is None)
        assert (len(logprobs.top_logprobs) > 5
                and logprobs.top_logprobs[0] is None)
        assert len(logprobs.tokens) > 5


if __name__ == "__main__":
    pytest.main([__file__])