attention.cpp 31.4 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
#include "cpu_types.hpp"

namespace {

template <typename scalar_t> struct KernelVecType {
  using q_load_vec_type = void;
  using q_vec_type = void;
  using k_load_vec_type = void;
  using k_vec_type = void;
  using qk_acc_vec_type = void;
  using v_load_vec_type = void;
};

template <> struct KernelVecType<float> {
  using q_load_vec_type = vec_op::FP32Vec4;
  using q_vec_type = vec_op::FP32Vec16;
  using k_load_vec_type = vec_op::FP32Vec16;
  using k_vec_type = vec_op::FP32Vec16;
  using qk_acc_vec_type = vec_op::FP32Vec16;
  using v_load_vec_type = vec_op::FP32Vec16;
};

#ifdef __AVX512BF16__
template <> struct KernelVecType<c10::BFloat16> {
  using q_load_vec_type = vec_op::BF16Vec8;
  using q_vec_type = vec_op::BF16Vec32;
  using k_load_vec_type = vec_op::BF16Vec32;
  using k_vec_type = vec_op::BF16Vec32;
  using qk_acc_vec_type = vec_op::FP32Vec16;
  using v_load_vec_type = vec_op::BF16Vec16;
};
#else
template <> struct KernelVecType<c10::BFloat16> {
  using q_load_vec_type = vec_op::BF16Vec8;
  using q_vec_type = vec_op::FP32Vec16;
  using k_load_vec_type = vec_op::BF16Vec16;
  using k_vec_type = vec_op::FP32Vec16;
  using qk_acc_vec_type = vec_op::FP32Vec16;
  using v_load_vec_type = vec_op::BF16Vec16;
};
#endif

template <typename T>
FORCE_INLINE std::pair<T, T> reduceSoftmax(T *data, const int size,
                                           const int capacity) {
  T max = data[0];
  for (int i = 1; i < size; ++i) {
    max = max >= data[i] ? max : data[i];
  }

  T sum = 0;
  for (int i = 0; i < size; ++i) {
    data[i] = std::exp(data[i] - max);
    sum += data[i];
  }

  int i = 0;
  for (; i < size; ++i) {
    data[i] /= sum;
  }

  for (; i < capacity; ++i) {
    data[i] = 0;
  }

  return {max, sum};
}

template <typename T>
FORCE_INLINE std::pair<T, T>
reduceSoftmaxAlibi(T *data, const int size, const int capacity,
                   const float alibi_slope, const int start_index,
                   const int context_len) {
  data[0] += alibi_slope * (start_index - context_len + 1);
  T max = data[0];
  for (int i = 1; i < size; ++i) {
    T qk = data[i] + alibi_slope * (start_index + i - context_len + 1);
    data[i] = qk;
    max = max >= qk ? max : qk;
  }

  T sum = 0;
  for (int i = 0; i < size; ++i) {
    data[i] = std::exp(data[i] - max);
    sum += data[i];
  }

  int i = 0;
  for (; i < size; ++i) {
    data[i] /= sum;
  }

  for (; i < capacity; ++i) {
    data[i] = 0;
  }

  return {max, sum};
}

template <typename T>
FORCE_INLINE void reducePartitonSoftmax(const T *max_data, T *sum_data,
                                        const int size) {
  T max = max_data[0];
  for (int i = 1; i < size; ++i) {
    max = max >= max_data[i] ? max : max_data[i];
  }

  T rescaled_sum = 0;
  for (int i = 0; i < size; ++i) {
    T rescale_factor = std::exp(max_data[i] - max);
    rescaled_sum += rescale_factor * sum_data[i];
    sum_data[i] *= rescale_factor;
  }
  for (int i = 0; i < size; ++i) {
    sum_data[i] /= rescaled_sum + 1e-8;
  }
}

template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int x>
struct reduceQKBlockKernel {
  using q_load_vec_type = typename KernelVecType<scalar_t>::q_load_vec_type;
  using q_vec_type = typename KernelVecType<scalar_t>::q_vec_type;
  using k_load_vec_type = typename KernelVecType<scalar_t>::k_load_vec_type;
  using k_vec_type = typename KernelVecType<scalar_t>::k_vec_type;
  using qk_acc_vec_type = typename KernelVecType<scalar_t>::qk_acc_vec_type;

  constexpr static int TOKEN_PER_GROUP = k_load_vec_type::get_elem_num() / x;
  constexpr static int MAX_GROUP_NUM = 16 / TOKEN_PER_GROUP;
  constexpr static int UNROLL_GROUP_NUM = MAX_GROUP_NUM / 4;

  static_assert(MAX_GROUP_NUM == 8 || MAX_GROUP_NUM == 4);
  static_assert(k_load_vec_type::get_elem_num() % x == 0);
  static_assert(q_load_vec_type::get_elem_num() * sizeof(scalar_t) == 16);

  FORCE_INLINE static void call(const scalar_t *__restrict__ q,
                                const scalar_t *__restrict__ k_block,
                                float *__restrict__ logits, float scale,
                                const int token_num) {
    const int group_num = (token_num + TOKEN_PER_GROUP - 1) / TOKEN_PER_GROUP;

    qk_acc_vec_type group_accums[MAX_GROUP_NUM];
    if (token_num == BLOCK_SIZE) {
      for (int q_offset = 0; q_offset < HEAD_SIZE;
           q_offset += x, k_block += x * BLOCK_SIZE) {
        q_load_vec_type q_load_group_vec(q + q_offset);
        q_vec_type q_group_vec(q_load_group_vec);

        vec_op::unroll_loop<int, MAX_GROUP_NUM>(
            [k_block, &q_group_vec, &group_accums](int token_group_idx) {
              k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
                                                             TOKEN_PER_GROUP);
              k_vec_type k_group_vec(k_load_group_vec);
              vec_op::fma(group_accums[token_group_idx], q_group_vec,
                          k_group_vec);
              vec_op::prefetch(k_block + x * BLOCK_SIZE +
                               token_group_idx * x * TOKEN_PER_GROUP);
            });
      }
    } else {
      for (int q_offset = 0; q_offset < HEAD_SIZE;
           q_offset += x, k_block += x * BLOCK_SIZE) {
        q_load_vec_type q_load_group_vec(q + q_offset);
        q_vec_type q_group_vec(q_load_group_vec);
        for (int token_group_start = 0; token_group_start < group_num;
             token_group_start += UNROLL_GROUP_NUM) {
          vec_op::unroll_loop<int, UNROLL_GROUP_NUM>(
              [token_group_start, k_block, &q_group_vec,
               &group_accums](int token_group_idx) {
                token_group_idx += token_group_start;
                k_load_vec_type k_load_group_vec(k_block + token_group_idx * x *
                                                               TOKEN_PER_GROUP);
                k_vec_type k_group_vec(k_load_group_vec);
                vec_op::fma(group_accums[token_group_idx], q_group_vec,
                            k_group_vec);
                vec_op::prefetch(k_block + x * BLOCK_SIZE +
                                 token_group_idx * x * TOKEN_PER_GROUP);
              });
        }
      }
    }

    for (int token_group_idx = 0; token_group_idx < group_num;
         ++token_group_idx) {
      vec_op::unroll_loop<int, TOKEN_PER_GROUP>(
          [&group_accums, logits, scale, token_group_idx](int token_idx) {
            float dot_v =
                group_accums[token_group_idx]
                    .template reduce_sub_sum<qk_acc_vec_type::get_elem_num() /
                                             TOKEN_PER_GROUP>(token_idx);
            logits[token_group_idx * TOKEN_PER_GROUP + token_idx] =
                dot_v * scale;
          });
    }
  }
};

template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE,
          int HEAD_PARTITION_SIZE, typename acc_t>
FORCE_INLINE void reduceValueBlock(const float *prob, const scalar_t *v_block,
                                   acc_t &&acc) {
  using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
  constexpr int ELEM_NUM = v_load_vec_type::get_elem_num();
  static_assert(BLOCK_SIZE == ELEM_NUM);
  vec_op::FP32Vec16 prob_vec(prob);

  vec_op::unroll_loop<int, HEAD_PARTITION_SIZE>([&](int head_elem_idx) {
    v_load_vec_type v_vec(v_block + BLOCK_SIZE * head_elem_idx);
    vec_op::FP32Vec16 fp32_v_vec(v_vec);
    acc[head_elem_idx] = acc[head_elem_idx] + prob_vec * fp32_v_vec;
  });
}
}; // namespace

// Paged attention v1
namespace {
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE>
struct paged_attention_v1_impl {
  static void
  call(scalar_t *__restrict__ out,           // [num_seqs, num_heads, head_size]
       const scalar_t *__restrict__ q,       // [num_seqs, num_heads, head_size]
       const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
                                             // head_size/x, block_size, x]
       const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
                                             // head_size, block_size]
       const int num_kv_heads, const float scale,
       const int
           *__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
       const int *__restrict__ context_lens, // [num_seqs]
       const int max_num_blocks_per_seq,
       const float *__restrict__ alibi_slopes, // [num_heads]
       const int q_stride, const int kv_block_stride, const int kv_head_stride,
       const int num_seqs, const int num_heads) {
    constexpr int x = 16 / sizeof(scalar_t);
    const int num_queries_per_kv = num_heads / num_kv_heads;

    static_assert(BLOCK_SIZE == 16);

    int max_context_len = max_num_blocks_per_seq * BLOCK_SIZE;
    int max_context_len_padded = (max_context_len + 15) & 0xFFFFFFF0;
    TORCH_CHECK((max_context_len_padded * sizeof(float)) % 64 == 0);

    const int parallel_work_item_num = omp_get_max_threads();

    size_t logits_bytes =
        parallel_work_item_num * max_context_len_padded * sizeof(float);
    float *logits = (float *)std::aligned_alloc(
        64, logits_bytes); // Cacheline alignment for each context token.
                           // [parallel_work_item_num, max_context_len_padded]

#pragma omp parallel for collapse(2) schedule(dynamic, 1)
    for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
      for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
        int context_len = context_lens[seq_idx];
        const int *seq_block_table =
            block_tables + max_num_blocks_per_seq * seq_idx;
        const int block_num = (context_len + BLOCK_SIZE - 1) / BLOCK_SIZE;
        const int64_t kv_head_idx = head_idx / num_queries_per_kv;
        const scalar_t *__restrict__ q_vec_ptr =
            q + seq_idx * q_stride + head_idx * HEAD_SIZE;
        const int last_block_token_num =
            context_len - (block_num - 1) * BLOCK_SIZE;
        float *__restrict__ thread_block_logits =
            logits + omp_get_thread_num() * max_context_len_padded;

        // Compute logits
        for (int block_idx = 0; block_idx < block_num; ++block_idx) {
          const int64_t physical_block_idx = seq_block_table[block_idx];
          const scalar_t *__restrict__ k_block_cache_ptr =
              k_cache + physical_block_idx * kv_block_stride +
              kv_head_idx * kv_head_stride;
          float *__restrict__ head_block_logits =
              thread_block_logits + block_idx * BLOCK_SIZE;

          reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
              q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
              block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
        }

        // Compute softmax
        if (alibi_slopes) {
          reduceSoftmaxAlibi(thread_block_logits, context_len,
                             block_num * BLOCK_SIZE, alibi_slopes[head_idx], 0,
                             context_len);
        } else {
          reduceSoftmax(thread_block_logits, context_len,
                        block_num * BLOCK_SIZE);
        }

        // Compute value
        constexpr int head_elem_num_per_partition = 16;
        constexpr int head_partition_num =
            HEAD_SIZE / head_elem_num_per_partition;
        for (int head_part_idx = 0; head_part_idx < head_partition_num;
             ++head_part_idx) {
          vec_op::FP32Vec16 accums[head_elem_num_per_partition];
          scalar_t *__restrict__ out_ptr =
              out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
              head_part_idx * head_elem_num_per_partition;
          for (int block_idx = 0; block_idx < block_num; ++block_idx) {
            const int64_t physical_block_idx = seq_block_table[block_idx];
            const float *__restrict__ prob_vec_ptr =
                thread_block_logits + block_idx * BLOCK_SIZE;
            const scalar_t *__restrict__ v_block_cache_ptr =
                v_cache + physical_block_idx * kv_block_stride +
                kv_head_idx * kv_head_stride +
                BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
            reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
                             head_elem_num_per_partition>(
                prob_vec_ptr, v_block_cache_ptr, accums);

            if (block_idx != block_num - 1) {
              const int64_t next_physical_block_idx =
                  seq_block_table[block_idx + 1];
              const scalar_t *__restrict__ next_v_block_cache_ptr =
                  v_cache + next_physical_block_idx * kv_block_stride +
                  kv_head_idx * kv_head_stride +
                  BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
              vec_op::unroll_loop<int, head_elem_num_per_partition>(
                  [&](int head_elem_idx) {
                    if (head_elem_idx % 2 == 0) {
                      vec_op::prefetch(next_v_block_cache_ptr +
                                       BLOCK_SIZE * head_elem_idx);
                    }
                  });
            }
          }

          vec_op::unroll_loop<int, head_elem_num_per_partition>(
              [&](int head_elem_idx) {
                float value = accums[head_elem_idx].reduce_sum();
                vec_op::storeFP32(value, out_ptr + head_elem_idx);
              });
        }
      }
    }
    std::free(logits);
  }
};

#define LAUNCH_V1_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE)                   \
  paged_attention_v1_impl<T, HEAD_SIZE, BLOCK_SIZE>::call(                     \
      out_ptr, query_ptr, key_cache_ptr, value_cache_ptr, num_kv_heads, scale, \
      block_tables_ptr, context_lens_ptr, max_num_blocks_per_seq,              \
      alibi_slopes_ptr, q_stride, kv_block_stride, kv_head_stride, num_seqs,   \
      num_heads);

template <typename T, int BLOCK_SIZE>
void paged_attention_v1_impl_launcher(
    torch::Tensor &out, torch::Tensor &query, torch::Tensor &key_cache,
    torch::Tensor &value_cache, int num_kv_heads, float scale,
    torch::Tensor &block_tables, torch::Tensor &context_lens,
    int max_context_len, const c10::optional<torch::Tensor> &alibi_slopes) {
  int num_seqs = query.size(0);
  int num_heads = query.size(1);
  int head_size = query.size(2);
  int max_num_blocks_per_seq = block_tables.size(1);
  int q_stride = query.stride(0);
  int kv_block_stride = key_cache.stride(0);
  int kv_head_stride = key_cache.stride(1);

  // NOTE: alibi_slopes is optional.
  const float *alibi_slopes_ptr =
      alibi_slopes
          ? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
          : nullptr;

  T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
  T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
  T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
  T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
  int *block_tables_ptr = block_tables.data_ptr<int>();
  int *context_lens_ptr = context_lens.data_ptr<int>();

  switch (head_size) {
  case 64:
    LAUNCH_V1_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
    break;
  case 80:
    LAUNCH_V1_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
    break;
  case 96:
    LAUNCH_V1_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
    break;
  case 112:
    LAUNCH_V1_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
    break;
  case 128:
    LAUNCH_V1_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
    break;
  case 256:
    LAUNCH_V1_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
    break;
  default:
    TORCH_CHECK(false, "Unsupported head size: ", head_size);
    break;
  }
}

#define CALL_V1_KERNEL_LAUNCHER(T, BLOCK_SIZE)                                 \
  paged_attention_v1_impl_launcher<T, BLOCK_SIZE>(                             \
      out, query, key_cache, value_cache, num_kv_heads, scale, block_tables,   \
      context_lens, max_context_len, alibi_slopes);

#define CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(T)                                  \
  switch (block_size) {                                                        \
  case 16:                                                                     \
    CALL_V1_KERNEL_LAUNCHER(T, 16);                                            \
    break;                                                                     \
  default:                                                                     \
    TORCH_CHECK(false, "Unsupported block size: ", block_size);                \
    break;                                                                     \
  }
} // namespace

void paged_attention_v1(torch::Tensor &out, torch::Tensor &query,
                        torch::Tensor &key_cache, torch::Tensor &value_cache,
                        int num_kv_heads, float scale,
                        torch::Tensor &block_tables,
                        torch::Tensor &context_lens, int block_size,
                        int max_context_len,
                        const c10::optional<torch::Tensor> &alibi_slopes,
                        const std::string &kv_cache_dtype, float kv_scale) {
  TORCH_CHECK(kv_scale == 1.0f);
  VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v1_impl",
                               [&] {
                                 CPU_KERNEL_GUARD_IN(paged_attention_v1_impl)
                                 CALL_V1_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
                                 CPU_KERNEL_GUARD_OUT(paged_attention_v1_impl)
                               });
}

// Paged attention v2
namespace {
template <typename scalar_t, int HEAD_SIZE, int BLOCK_SIZE, int PARTITION_SIZE>
struct paged_attention_v2_impl {
  static void call(
      scalar_t *__restrict__ out,   // [num_seqs, num_heads, head_size]
      float *__restrict__ exp_sums, // [num_seqs, num_heads, max_num_partitions]
      float
          *__restrict__ max_logits, // [num_seqs, num_heads, max_num_partitions]
      scalar_t *__restrict__ tmp_out,       // [num_seqs, num_heads,
                                            // max_num_partitions, head_size]
      const scalar_t *__restrict__ q,       // [num_seqs, num_heads, head_size]
      const scalar_t *__restrict__ k_cache, // [num_blocks, num_kv_heads,
                                            // head_size/x, block_size, x]
      const scalar_t *__restrict__ v_cache, // [num_blocks, num_kv_heads,
                                            // head_size, block_size]
      const int num_kv_heads, const float scale,
      const int
          *__restrict__ block_tables, // [num_seqs, max_num_blocks_per_seq]
      const int *__restrict__ context_lens, // [num_seqs]
      const int max_num_blocks_per_seq,
      const float *__restrict__ alibi_slopes, // [num_heads]
      const int q_stride, const int kv_block_stride, const int kv_head_stride,
      const int num_seqs, const int num_heads, const int max_num_partitions) {
    constexpr int x = 16 / sizeof(scalar_t);
    const int num_queries_per_kv = num_heads / num_kv_heads;

    static_assert(BLOCK_SIZE == 16);
    static_assert(PARTITION_SIZE * sizeof(float) % 64 == 0);
    static_assert(PARTITION_SIZE % BLOCK_SIZE == 0);

#pragma omp parallel for collapse(3) schedule(static, 1)
    for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
      for (int partition_idx = 0; partition_idx < max_num_partitions;
           ++partition_idx) {
        for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
          const int context_len = context_lens[seq_idx];
          const int start_token_idx = partition_idx * PARTITION_SIZE;

          if (start_token_idx >= context_len)
            continue;

          const int partition_num =
              (context_len + PARTITION_SIZE - 1) / PARTITION_SIZE;
          const bool no_reduce = (partition_num == 1);
          const int context_token_num =
              (std::min(context_len, start_token_idx + PARTITION_SIZE) -
               start_token_idx);
          const int block_num =
              (context_token_num + BLOCK_SIZE - 1) / BLOCK_SIZE;
          const int last_block_token_num =
              context_token_num - (block_num - 1) * BLOCK_SIZE;
          const int *seq_block_table = block_tables +
                                       max_num_blocks_per_seq * seq_idx +
                                       start_token_idx / BLOCK_SIZE;
          const int64_t kv_head_idx = head_idx / num_queries_per_kv;
          const scalar_t *__restrict__ q_vec_ptr =
              q + seq_idx * q_stride + head_idx * HEAD_SIZE;

          float logits[PARTITION_SIZE] __attribute__((aligned(64))) = {0};

          // Compute logits
          for (int block_idx = 0; block_idx < block_num; ++block_idx) {
            const int64_t physical_block_idx = seq_block_table[block_idx];
            const scalar_t *__restrict__ k_block_cache_ptr =
                k_cache + physical_block_idx * kv_block_stride +
                kv_head_idx * kv_head_stride;
            float *__restrict__ head_block_logits =
                logits + block_idx * BLOCK_SIZE;

            reduceQKBlockKernel<scalar_t, HEAD_SIZE, BLOCK_SIZE, x>::call(
                q_vec_ptr, k_block_cache_ptr, head_block_logits, scale,
                block_idx == block_num - 1 ? last_block_token_num : BLOCK_SIZE);
          }

          std::pair<float, float> max_and_sum;
          if (alibi_slopes) {
            max_and_sum = reduceSoftmaxAlibi(
                logits, context_token_num, block_num * BLOCK_SIZE,
                alibi_slopes[head_idx], start_token_idx, context_len);
          } else {
            max_and_sum = reduceSoftmax(logits, context_token_num,
                                        block_num * BLOCK_SIZE);
          }

          auto &&[max_logit, exp_sum] = max_and_sum;

          scalar_t *__restrict__ output_buffer = nullptr;
          if (!no_reduce) {
            auto idx = seq_idx * num_heads * max_num_partitions +
                       head_idx * max_num_partitions + partition_idx;
            max_logits[idx] = max_logit;
            exp_sums[idx] = exp_sum;
            output_buffer =
                tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
                head_idx * max_num_partitions * HEAD_SIZE +
                partition_idx * HEAD_SIZE;
          } else {
            output_buffer =
                out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE;
          }

          // Compute value
          constexpr int head_elem_num_per_partition = 16;
          constexpr int head_partition_num =
              HEAD_SIZE / head_elem_num_per_partition;
          for (int head_part_idx = 0; head_part_idx < head_partition_num;
               ++head_part_idx) {
            vec_op::FP32Vec16 accums[head_elem_num_per_partition];
            scalar_t *__restrict__ out_ptr =
                output_buffer + head_part_idx * head_elem_num_per_partition;
            for (int block_idx = 0; block_idx < block_num; ++block_idx) {
              const int64_t physical_block_idx = seq_block_table[block_idx];
              const float *__restrict__ prob_vec_ptr =
                  logits + block_idx * BLOCK_SIZE;
              const scalar_t *__restrict__ v_block_cache_ptr =
                  v_cache + physical_block_idx * kv_block_stride +
                  kv_head_idx * kv_head_stride +
                  BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
              reduceValueBlock<scalar_t, HEAD_SIZE, BLOCK_SIZE,
                               head_elem_num_per_partition>(
                  prob_vec_ptr, v_block_cache_ptr, accums);

              if (block_idx != block_num - 1) {
                const int64_t next_physical_block_idx =
                    seq_block_table[block_idx + 1];
                const scalar_t *__restrict__ next_v_block_cache_ptr =
                    v_cache + next_physical_block_idx * kv_block_stride +
                    kv_head_idx * kv_head_stride +
                    BLOCK_SIZE * head_part_idx * head_elem_num_per_partition;
                vec_op::unroll_loop<int, head_elem_num_per_partition>(
                    [&](int head_elem_idx) {
                      if (head_elem_idx % 2 == 0) {
                        vec_op::prefetch(next_v_block_cache_ptr +
                                         BLOCK_SIZE * head_elem_idx);
                      }
                    });
              }
            }

            vec_op::unroll_loop<int, head_elem_num_per_partition>(
                [&](int head_elem_idx) {
                  float value = accums[head_elem_idx].reduce_sum();
                  vec_op::storeFP32(value, out_ptr + head_elem_idx);
                });
          }
        }
      }
    }

    // Rescale partition softmax and store the factors to exp_sums
#pragma omp parallel for collapse(2) schedule(static, 1)
    for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
      for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
        const int context_len = context_lens[seq_idx];
        const int partition_num =
            (context_len + PARTITION_SIZE - 1) / PARTITION_SIZE;

        if (partition_num == 1)
          continue;

        reducePartitonSoftmax(
            max_logits + seq_idx * num_heads * max_num_partitions +
                head_idx * max_num_partitions,
            exp_sums + seq_idx * num_heads * max_num_partitions +
                head_idx * max_num_partitions,
            partition_num);
      }
    }

    // Reduce values
    using v_load_vec_type = typename KernelVecType<scalar_t>::v_load_vec_type;
    static_assert(v_load_vec_type::get_elem_num() == BLOCK_SIZE);
    constexpr int head_elem_num_per_group =
        16; // Note: didn't align with the cacheline size, due to some HEAD_SIZE
            // didn't align with 64 bytes
    static_assert(HEAD_SIZE % head_elem_num_per_group == 0);
    constexpr int head_group_num = HEAD_SIZE / head_elem_num_per_group;
    const float *__restrict__ rescale_factors = exp_sums;
#pragma omp parallel for collapse(3) schedule(static, 1)
    for (int seq_idx = 0; seq_idx < num_seqs; ++seq_idx) {
      for (int head_idx = 0; head_idx < num_heads; ++head_idx) {
        for (int group_idx = 0; group_idx < head_group_num; ++group_idx) {
          const int context_len = context_lens[seq_idx];
          const int partition_num =
              (context_len + PARTITION_SIZE - 1) / PARTITION_SIZE;

          if (partition_num == 1)
            continue;

          const float *__restrict__ seq_head_rescale_factors =
              rescale_factors + seq_idx * num_heads * max_num_partitions +
              head_idx * max_num_partitions;
          const scalar_t *__restrict__ seq_head_tmp_out =
              tmp_out + seq_idx * num_heads * max_num_partitions * HEAD_SIZE +
              head_idx * max_num_partitions * HEAD_SIZE +
              group_idx * head_elem_num_per_group;
          scalar_t *__restrict__ seq_head_output =
              out + seq_idx * num_heads * HEAD_SIZE + head_idx * HEAD_SIZE +
              group_idx * head_elem_num_per_group;

          vec_op::FP32Vec16 acc;
          for (int i = 0; i < partition_num; ++i) {
            vec_op::FP32Vec16 rescale_factor(seq_head_rescale_factors[i]);
            v_load_vec_type value(seq_head_tmp_out + i * HEAD_SIZE);
            vec_op::FP32Vec16 fp32_value(value);
            acc = acc + fp32_value * rescale_factor;
          }
          v_load_vec_type cast_acc(acc);
          cast_acc.save(seq_head_output);
        }
      }
    }
  }
};

#define LAUNCH_V2_ATTENTION_KERNEL(T, HEAD_SIZE, BLOCK_SIZE)                   \
  paged_attention_v2_impl<T, HEAD_SIZE, BLOCK_SIZE, PARTITION_SIZE>::call(     \
      out_ptr, exp_sums_ptr, max_logits_ptr, tmp_out_ptr, query_ptr,           \
      key_cache_ptr, value_cache_ptr, num_kv_heads, scale, block_tables_ptr,   \
      context_lens_ptr, max_num_blocks_per_seq, alibi_slopes_ptr, q_stride,    \
      kv_block_stride, kv_head_stride, num_seqs, num_heads,                    \
      max_num_partitions);

template <typename T, int BLOCK_SIZE, int PARTITION_SIZE = 512>
void paged_attention_v2_impl_launcher(
    torch::Tensor &out, torch::Tensor &exp_sums, torch::Tensor &max_logits,
    torch::Tensor &tmp_out, torch::Tensor &query, torch::Tensor &key_cache,
    torch::Tensor &value_cache, int num_kv_heads, float scale,
    torch::Tensor &block_tables, torch::Tensor &context_lens, int block_size,
    int max_context_len, const c10::optional<torch::Tensor> &alibi_slopes) {
  int num_seqs = query.size(0);
  int num_heads = query.size(1);
  int head_size = query.size(2);
  int max_num_blocks_per_seq = block_tables.size(1);
  int q_stride = query.stride(0);
  int kv_block_stride = key_cache.stride(0);
  int kv_head_stride = key_cache.stride(1);
  int max_num_partitions = exp_sums.size(-1);

  // NOTE: alibi_slopes is optional.
  const float *alibi_slopes_ptr =
      alibi_slopes
          ? reinterpret_cast<const float *>(alibi_slopes.value().data_ptr())
          : nullptr;

  T *out_ptr = reinterpret_cast<T *>(out.data_ptr());
  float *exp_sums_ptr = reinterpret_cast<float *>(exp_sums.data_ptr());
  float *max_logits_ptr = reinterpret_cast<float *>(max_logits.data_ptr());
  T *tmp_out_ptr = reinterpret_cast<T *>(tmp_out.data_ptr());
  T *query_ptr = reinterpret_cast<T *>(query.data_ptr());
  T *key_cache_ptr = reinterpret_cast<T *>(key_cache.data_ptr());
  T *value_cache_ptr = reinterpret_cast<T *>(value_cache.data_ptr());
  int *block_tables_ptr = block_tables.data_ptr<int>();
  int *context_lens_ptr = context_lens.data_ptr<int>();

  switch (head_size) {
  case 64:
    LAUNCH_V2_ATTENTION_KERNEL(T, 64, BLOCK_SIZE);
    break;
  case 80:
    LAUNCH_V2_ATTENTION_KERNEL(T, 80, BLOCK_SIZE);
    break;
  case 96:
    LAUNCH_V2_ATTENTION_KERNEL(T, 96, BLOCK_SIZE);
    break;
  case 112:
    LAUNCH_V2_ATTENTION_KERNEL(T, 112, BLOCK_SIZE);
    break;
  case 128:
    LAUNCH_V2_ATTENTION_KERNEL(T, 128, BLOCK_SIZE);
    break;
  case 256:
    LAUNCH_V2_ATTENTION_KERNEL(T, 256, BLOCK_SIZE);
    break;
  default:
    TORCH_CHECK(false, "Unsupported head size: ", head_size);
    break;
  }
}

#define CALL_V2_KERNEL_LAUNCHER(T, BLOCK_SIZE)                                 \
  paged_attention_v2_impl_launcher<T, BLOCK_SIZE>(                             \
      out, exp_sums, max_logits, tmp_out, query, key_cache, value_cache,       \
      num_kv_heads, scale, block_tables, context_lens, block_size,             \
      max_context_len, alibi_slopes);

#define CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(T)                                  \
  switch (block_size) {                                                        \
  case 16:                                                                     \
    CALL_V2_KERNEL_LAUNCHER(T, 16);                                            \
    break;                                                                     \
  default:                                                                     \
    TORCH_CHECK(false, "Unsupported block size: ", block_size);                \
    break;                                                                     \
  }
} // namespace

void paged_attention_v2(torch::Tensor &out, torch::Tensor &exp_sums,
                        torch::Tensor &max_logits, torch::Tensor &tmp_out,
                        torch::Tensor &query, torch::Tensor &key_cache,
                        torch::Tensor &value_cache, int num_kv_heads,
                        float scale, torch::Tensor &block_tables,
                        torch::Tensor &context_lens, int block_size,
                        int max_context_len,
                        const c10::optional<torch::Tensor> &alibi_slopes,
                        const std::string &kv_cache_dtype, float kv_scale) {
  TORCH_CHECK(kv_scale == 1.0f);
  VLLM_DISPATCH_FLOATING_TYPES(query.scalar_type(), "paged_attention_v2_impl",
                               [&] {
                                 CPU_KERNEL_GUARD_IN(paged_attention_v2_impl)
                                 CALL_V2_KERNEL_LAUNCHER_BLOCK_SIZE(scalar_t);
                                 CPU_KERNEL_GUARD_OUT(paged_attention_v2_impl)
                               });
}