run_text_generation_server_hf.py 9.25 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
#!/usr/bin/python
# -*- coding: UTF-8 -*-

"""Sample Generate Yuan"""
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))
from transformers import AutoModelForCausalLM, LlamaTokenizer
from transformers import BitsAndBytesConfig
import torch
import argparse
import time
import datetime
import math
from flask import Flask, request, jsonify
from flask_restful import Resource, Api
import threading
lock = threading.Lock()

# 注意:若在Windows中运行,提示flash_atten未安装时,需要按以下方式修改代码
# 修改 config.json中"use_flash_attention"为 false;
# 注释掉 yuan_hf_model.py中第35、36行;
# 修改yuan_hf_model.py中第271行为 inference_hidden_states_memory = torch.empty(bsz, 2, hidden_states.shape[2], dtype=hidden_states.dtype)


def text_generate_args():
    """
    # max_length:生成文本的最大长度;
    # min_length:生成文本的最小长度;
    # do_sample=False 来使用贪心采样,设置 do_sample=True 和 temperature=1.0 来使用随机采样;
    # 设置 do_sample=True、top_k=K 和 temperature=1.0 来使用 Top-K 采样;
    # num_beams:Beam Search 算法中的 beam 宽度,用于控制生成结果的多样性,设置 num_beams=K 来使用 Beam Search 算法;
    # temperature:用于控制生成结果的多样性,值越高生成的文本越多样化,设置 temperature=T 来调整温度。
    """

    parser = argparse.ArgumentParser(description='Yuan text generation')
    parser.add_argument('--do_sample', type=bool, default=False)
    parser.add_argument("--temperature", type=float, default=1.0, help='Sampling temperature.')
    parser.add_argument("--top_k", type=int, default=0, help='Top k sampling.')
    parser.add_argument("--max_length", type=int, default=1024, help='Size of the output generated text.')
    parser.add_argument('--min_length', type=int, default=0)
    parser.add_argument('--num_beams', type=int, default=1)
    parser.add_argument('--load', type=str, default="IEITYuan/Yuan2-2B-hf", help='Directory containing a model checkpoint.')
    parser.add_argument('--gpu', type=str, default="0", help='the num of gpu you used')
    args = parser.parse_args()

    return args


def success_ques(outputs, message="success"):
    basic = {"flag": True,
                  "errCode": "0",
                  "errMessage": message,
                  "exceptionMsg": "",
                  "resData": outputs}
    print(outputs)
    return basic

def fail_exception(err_message, err_code):
    basic = {"flag": False,  # True、False
                  "errCode": err_code,
                  "successMessage": "",
                  "exceptionMsg": err_message,  # if error,return info
                  "resData": {}}
    print(err_code, err_message)
    return basic


class MegatronGenerate(Resource):
    def __init__(self, model ,tokenizer, args):
        self.model = model
        self.tokenizer = tokenizer
        self.args = args
        self.AS_ERROR_INPUT_CODE = 1
        self.AS_ERROR_GENERATE_CODE = 2

    def put(self):
        args = self.args
        print('=========================================')
        print("request IP: " + str(request.remote_addr))
        print("current time: ", datetime.datetime.now())
        print(request.get_json())

        if not "ques_list" in request.get_json():
            e = "ques_list argument required"
            return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        ques_list = request.get_json()["ques_list"]
        if not isinstance(ques_list, list):
            e = "ques_list is not a list"
            return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        if len(ques_list) == 0:
            e = "ques_list is empty"
            return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        if len(ques_list) > 1:
            e = "Maximum number of ques_list is 1"
            return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        tokens_to_generate = args.max_length  # Choosing hopefully sane default. Full sequence is slow
        # tokens_to_generate = (args.max_len - len(tokens))
        if "tokens_to_generate" in request.get_json():
            tokens_to_generate = request.get_json()["tokens_to_generate"]
            if not isinstance(tokens_to_generate, int) or tokens_to_generate < 1:
                e = "tokens_to_generate must be an integer and greater than 0"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        temperature = args.temperature
        if "temperature" in request.get_json():
            temperature = request.get_json()["temperature"]
            if not (type(temperature) == int or type(temperature) == float):
                e = "the type of temperature must be int or float"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

            if not (0.0 < temperature <= 100.0):
                e = "temperature must be a positive number less than or equal to 100.0"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        top_k = args.top_k
        if "top_k" in request.get_json():
            top_k = request.get_json()["top_k"]
            if not (type(top_k) == int):
                e = "the type of top_k must be int"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))
            if not (0 <= top_k <= 1000):
                e = "top_k must be greater than or equal to 0"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        num_beams = args.num_beams
        if "num_beams" in request.get_json():
            num_beams = request.get_json()["num_beams"]
            if not isinstance(num_beams, int):
                return "random_seed must be integer"
            if num_beams < 0:
                return "random_seed must be a positive integer"

        do_sample = args.do_sample
        if "do_sample" in request.get_json():
            do_sample = request.get_json()["do_sample"]
            if not isinstance(do_sample, bool):
                return "do_sample must be a boolean value"

        try:
            with lock:  # Need to get lock to keep multiple threads from hitting code
                print('input:' + str(ques_list[0]["ques"]))
                inputs = tokenizer(ques_list[0]["ques"], return_tensors="pt")["input_ids"].to(self.args.device)

                response_raw = model.generate(inputs, do_sample=do_sample, top_k=top_k, temperature=temperature, num_beams=num_beams, max_length=tokens_to_generate)
                response = tokenizer.decode(response_raw[0])
                print('output:' + response)

                res = response.strip()
                res = res.split('<sep>')[-1].replace('</s>', '')
                outputs = [{"id": '0', "ans": res}]
                resData = {'output': outputs}
                print("infer finished time: ", datetime.datetime.now())
                return jsonify(success_ques(resData))
        except Exception as e:
            return jsonify(fail_exception(str(e), self.AS_ERROR_GENERATE_CODE))


class YuanServer(object):
    def __init__(self, model, tokenizer, args):
        self.app = Flask(__name__, static_url_path='')
        api = Api(self.app)
        api.add_resource(MegatronGenerate, '/yuan', resource_class_args=[model, tokenizer, args])

    def run(self, url, port):
        self.app.run(url, threaded=True, debug=False, port=int(os.environ.get("PORT", port)))


if __name__ == "__main__":
    t = time.time()
    seed = int(1000 * (math.ceil(t) - t))
    args = text_generate_args()
    args.device = torch.device("cuda:{0}".format(args.gpu) if torch.cuda.is_available() else 'cpu')  # 设备

    print("Creat tokenizer...")
    tokenizer = LlamaTokenizer.from_pretrained(args.load, add_eos_token=False, add_bos_token=False, eos_token='<eod>')
    tokenizer.add_tokens(['<sep>', '<pad>', '<mask>', '<predict>', '<FIM_SUFFIX>', '<FIM_PREFIX>', '<FIM_MIDDLE>', '<commit_before>',
         '<commit_msg>', '<commit_after>', '<jupyter_start>', '<jupyter_text>', '<jupyter_code>', '<jupyter_output>', '<empty_output>'], special_tokens=True)

    print("Creat model...")

    if torch.cuda.is_available():
        # gpu 推理代码
        device_map = 'auto'
    else:
        # cpu 推理代码
        device_map = 'cpu'

    # # gpu 量化推理代码
    # # Our 4-bit configuration to load the LLM with less GPU memory
    # bnb_config = BitsAndBytesConfig(
    #     load_in_4bit=True,  # 4-bit quantization
    #     bnb_4bit_quant_type='nf4',  # Normalized float 4
    #     bnb_4bit_use_double_quant=True,  # Second quantization after the first
    #     bnb_4bit_compute_dtype=torch.bfloat16  # Computation type
    # )
    # model = AutoModelForCausalLM.from_pretrained(args.load, device_map=device_map, quantization_config=bnb_config, trust_remote_code=True).eval()

    if device_map == 'cpu':
        model = AutoModelForCausalLM.from_pretrained(args.load, device_map=device_map, trust_remote_code=True).eval()
    else:
        model = AutoModelForCausalLM.from_pretrained(args.load, device_map=device_map, torch_dtype=torch.bfloat16, trust_remote_code=True).eval()

    server = YuanServer(model, tokenizer, args)
    server.run("0.0.0.0", port=int(os.environ.get("PORT", 8000)))