eval_for_mmlu.py 8.19 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import sys
import os
import torch
from abc import ABC
from tqdm import tqdm
from torch.utils.data import Dataset

sys.path.append('./')
from megatron import get_args
from megatron.core import mpu
from megatron import get_tokenizer
from megatron.model import GPTModel
from megatron.training import get_model
from megatron.checkpointing import load_checkpoint
from megatron.initialize import initialize_megatron
from megatron.arguments import core_transformer_config_from_args
from megatron.text_generation import generate_and_post_process
from megatron.text_generation import beam_search_and_post_process


def model_provider(pre_process=True, post_process=True):
    config = core_transformer_config_from_args(get_args())
    model = GPTModel(config, num_tokentypes=0, parallel_output=False, pre_process=pre_process, post_process=post_process)
    return model

def add_text_generate_args(parser):
    group = parser.add_argument_group(title='text generation')
    group.add_argument('--max_len', type=int, default=1024)
    group.add_argument('--model_config_path', type=str, default='./')
    group.add_argument('--math_datapath', type=str, default='./')
    group.add_argument('--output_path', type=str, default='./')
    group.add_argument('--num_samples_per_task', type=int, default=10)
    group.add_argument('--top_k', type=int, default=0)
    group.add_argument('--top_p', type=float, default=0.95)
    group.add_argument('--top_p_decay', type=float, default=0.0)
    group.add_argument('--top_p_bound', type=float, default=0.0)
    group.add_argument('--temp', type=float, default=0.5)
    group.add_argument('--min_length', type=int, default=0)
    group.add_argument('--random_seed', type=int, default=1234)
    group.add_argument('--beam_width', type=int, default=None)
    group.add_argument('--length_penalty', type=int, default=1)
    group.add_argument('--prevent_newline_after_colon', type=bool, default=False)
    return parser

def clean_tab(msg_text):
    __sep_note = "<n>"
    msg_text = msg_text.replace("\n", __sep_note)
    msg_text = msg_text.replace(__sep_note + __sep_note, __sep_note)
    msg_text = msg_text.replace(__sep_note + __sep_note, __sep_note)
    msg_text = msg_text.replace(__sep_note + __sep_note, __sep_note)
    return msg_text

class EvalDataset(ABC, Dataset):
    def __init__(self, data_path):
        self.problems = []
        self.keys = []
        self.answers = []

        with open(data_path, 'r') as f:
            lines = f.readlines()
            for ii, line in enumerate(lines):
                line = line.strip()
                index = line.find('[SEP]')
                prompt = 'Choose the correct answer from the options after each question.<n>'
                line = prompt + line[:index] + '<sep>'
                line = line.replace('<n>', '\n')
                self.problems.append(line)
                self.keys.append(ii)
                self.answers.append('')

    def __len__(self):
        return len(self.problems)

    def __getitem__(self, idx):
        try:
            key = self.keys[idx]
            sample = self.problems[key]
        except Exception as e:
            print(e, idx, len(self.problems))
            exit()
        return {'task_id':key, 'sample':sample}


def main():
    initialize_megatron(extra_args_provider=add_text_generate_args,
                        args_defaults={'tokenizer_type': 'YuanTokenizer',
                                       'no_load_rng': True,
                                       'no_load_optim': True})
    args = get_args()
    dataset = EvalDataset(args.math_datapath)
    sampler = torch.utils.data.distributed.DistributedSampler(dataset, rank=mpu.get_data_parallel_rank(), num_replicas = mpu.get_data_parallel_world_size(), shuffle=False, drop_last=False)
    data_loader = torch.utils.data.DataLoader(dataset,
            batch_size=args.micro_batch_size,
            sampler=sampler,
            num_workers=args.num_workers,
            shuffle=False,
            pin_memory=True,
            drop_last=False,
            prefetch_factor=2)
    model = get_model(model_provider, wrap_with_ddp=False)
    if args.load is not None:
        _ = load_checkpoint(model, None, None)
    assert len(model) == 1, "Above condition should have caught this"
    model = model[0]
    tokenizer = get_tokenizer()
    tokenizer.add_eos_token = False
    tokenizer.add_bos_token = False
    tokenizer.eod = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
    stop_token = tokenizer.convert_tokens_to_ids(tokenizer.eos_token)
    tokenizer.add_special_tokens({'pad_token': '<pad>'})
    torch.distributed.barrier()
    model.eval()
    if args.fp16:
        model = model.half()
    elif args.bf16:
        model = model.bfloat16()
    else:
        model = model.float()
    model.cuda()
    torch.distributed.barrier()
    if torch.distributed.get_rank()==0 and not os.path.exists(args.output_path):
        os.makedirs(args.output_path)

    with torch.no_grad():
        data_iter = tqdm(enumerate(data_loader), total=len(data_loader)) if torch.distributed.get_rank()==0 else enumerate(data_loader)
        for i, batch in data_iter:
            sample_iter = tqdm(range(args.num_samples_per_task), total=args.num_samples_per_task) if torch.distributed.get_rank()==0 else  range(args.num_samples_per_task)
            for j in sample_iter:
                def inference_once(top_k=None, top_p=None, temp=None, seed=None):
                    tokens = tokenizer(batch['sample'], return_tensors='pt', padding=True).input_ids[:,:-1].to(torch.cuda.current_device())
                    if args.beam_width is not None:
                        response, response_seg, response_scores = \
                            beam_search_and_post_process(
                            model,
                            prompts=batch['sample'],
                            tokens_to_generate=(args.max_len - len(tokens)),
                            beam_size = args.beam_width,
                            add_BOS=False,
                            stop_token=stop_token,
                            num_return_gen=args.beam_width,
                            length_penalty=args.length_penalty,
                            prevent_newline_after_colon=args.prevent_newline_after_colon
                            )
                    else:
                        response, response_seg, response_logprobs, _ = \
                            generate_and_post_process(
                            model,
                            prompts=batch['sample'],
                            tokens_to_generate=(args.max_len - len(tokens)),
                            return_output_log_probs=False,
                            top_k_sampling=top_k,
                            top_p_sampling=top_p,
                            top_p_decay=args.top_p_decay,
                            top_p_bound=args.top_p_bound,
                            temperature=temp,
                            add_BOS=False,
                            stop_on_eol=False,
                            prevent_newline_after_colon=args.prevent_newline_after_colon,
                            random_seed=seed)

                    if mpu.is_pipeline_first_stage() and mpu.get_tensor_model_parallel_rank() == 0:
                        if response[0][0]==' ':
                            response = [response[0][1:-5]]
                        else:
                            response = [response[0][0:-5]]
                        new_sample = response
                        print('\n' + response[0])

                        with open(os.path.join(args.output_path, f'samples_{args.rank}.jsonl'), 'a', encoding='utf-8') as fp:
                            for _, x in enumerate(new_sample):
                                res = x.strip()
                                res = res.replace('<pad>', '')
                                res = res.replace('<eod>', '')
                                res = res.replace('<sep>', '[SEP]')
                                res = clean_tab(res)
                                record_res = res.strip() + '\n'
                                fp.write(record_res)
                inference_once(top_k=args.top_k, top_p=args.top_p, temp=args.temp, seed=args.random_seed)
              
    torch.distributed.barrier()


if __name__ == '__main__':
    main()