text_generation_server.py 12.8 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import datetime
import torch
import json
import threading
from flask import Flask, request, jsonify, current_app
from flask_restful import Resource, Api
from megatron import get_args
from megatron.text_generation import generate_and_post_process
from megatron.text_generation import beam_search_and_post_process
import os
from megatron import get_tokenizer

GENERATE_NUM = 0
BEAM_NUM = 1
lock = threading.Lock()


def success_ques(outputs, message="success"):
    basic = {"flag": True,
                  "errCode": "0",
                  "errMessage": message,
                  "exceptionMsg": "",
                  "resData": outputs}
    print(outputs)
    return basic
def fail_exception(err_message, err_code):
    basic = {"flag": False,  # True、False
                  "errCode": err_code,
                  "successMessage": "",  
                  "exceptionMsg": err_message,  # if error,return info
                  "resData": {}}
    print(err_code, err_message)
    return basic


class MegatronGenerate(Resource):
    def __init__(self, model):
        self.model = model
        self.AS_ERROR_INPUT_CODE=1
        self.AS_ERROR_GENERATE_CODE=2
        # self.tokenizer = get_tokenizer()

    @staticmethod
    def send_do_generate():
        choice = torch.cuda.LongTensor([GENERATE_NUM])
        torch.distributed.broadcast(choice, 0)
     
    @staticmethod
    def send_do_beam_search():
        choice = torch.cuda.LongTensor([BEAM_NUM])
        torch.distributed.broadcast(choice, 0)
    
    def put(self):
        args = get_args()
        print('=========================================')
        print("request IP: " + str(request.remote_addr))
        print("current time: ", datetime.datetime.now())
        print(request.get_json())

        if not "ques_list" in request.get_json():
            e = "ques_list argument required"
            return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        ques_list = request.get_json()["ques_list"]
        if not isinstance(ques_list, list):
            e = "ques_list is not a list"
            return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        if len(ques_list) == 0:
            e = "ques_list is empty"
            return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))
        
        if len(ques_list) > 128:
            e = "Maximum number of ques_list is 128"
            return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))
        
        tokens_to_generate = args.out_seq_length  # Choosing hopefully sane default.  Full sequence is slow
        # tokens_to_generate = (args.max_len - len(tokens))
        if "tokens_to_generate" in request.get_json():
            tokens_to_generate = request.get_json()["tokens_to_generate"]
            if not isinstance(tokens_to_generate, int) or tokens_to_generate < 1:
                e = "tokens_to_generate must be an integer and greater than 0"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

        logprobs = False
        if "logprobs" in request.get_json():
            logprobs = request.get_json()["logprobs"]
            if not isinstance(logprobs, bool):
                return "logprobs must be a boolean value"
        
        if tokens_to_generate == 0 and not logprobs:
            return "tokens_to_generate=0 implies logprobs should be True"
        
        temperature = args.temperature
        if "temperature" in request.get_json():
            temperature = request.get_json()["temperature"]
            if not (type(temperature) == int or type(temperature) == float):
                e = "the type of temperature must be int or float"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

            if not (0.0 < temperature <= 100.0):
                e = "temperature must be a positive number less than or equal to 100.0"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))
        
        top_k = args.top_k
        if "top_k" in request.get_json():
            top_k = request.get_json()["top_k"]
            if not (type(top_k) == int):
                e = "the type of top_k must be int"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))
            if not (0 <= top_k <= 1000):
                e = "top_k must be greater than or equal to 1"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))
        
        top_p = args.top_p
        if "top_p" in request.get_json():
            top_p = request.get_json()["top_p"]
            if not (type(top_p) == int or type(top_p) == float):
                e = "the type of top_p must be int or float"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))
            if not (0.0 <= top_p <= 1.0):
                e = "top_p must be a positive number and must be less than or equal to 1.0"
                return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))
        
        top_p_decay = args.top_p_decay
        if "top_p_decay" in request.get_json():
            top_p_decay = request.get_json()["top_p_decay"]
            if not (type(top_p_decay) == float):
                return "top_p_decay must be a positive float less than or equal to 1.0"
            if top_p == 0.0:
                return "top_p_decay cannot be set without top_p"
            if not (0 <= top_p_decay <= 1.0):
                return "top_p_decay must be less than or equal to 1.0"
        
        top_p_bound = args.top_p_bound
        if "top_p_bound" in request.get_json():
            top_p_bound = request.get_json()["top_p_bound"]
            if not (type(top_p_bound) == float):
                return "top_p_bound must be a positive float less than or equal to top_p"
            if top_p == 0.0:
                return "top_p_bound cannot be set without top_p"
            if not (0.0 < top_p_bound <= top_p):
                return "top_p_bound must be greater than 0 and less than top_p"
        
        add_BOS = False
        if "add_BOS" in request.get_json():
            add_BOS = request.get_json()["add_BOS"]
            if not isinstance(add_BOS, bool):
                return "add_BOS must be a boolean value"
        
        # if any([len(prompt) == 0 for prompt in prompts]) and not add_BOS:
        #     return "Empty prompts require add_BOS=true"

        stop_on_double_eol = False
        if "stop_on_double_eol" in request.get_json():
            stop_on_double_eol = request.get_json()["stop_on_double_eol"]
            if not isinstance(stop_on_double_eol, bool):
                return "stop_on_double_eol must be a boolean value"
        
        stop_on_eol = False
        if "stop_on_eol" in request.get_json():
            stop_on_eol = request.get_json()["stop_on_eol"]
            if not isinstance(stop_on_eol, bool):
                return "stop_on_eol must be a boolean value"

        prevent_newline_after_colon = args.prevent_newline_after_colon
        if "prevent_newline_after_colon" in request.get_json():
            prevent_newline_after_colon = request.get_json()["prevent_newline_after_colon"]
            if not isinstance(prevent_newline_after_colon, bool):
                return "prevent_newline_after_colon must be a boolean value"

        random_seed = args.random_seed
        if "random_seed" in request.get_json():
            random_seed = request.get_json()["random_seed"]
            if not isinstance(random_seed, int):
                return "random_seed must be integer"
            if random_seed < 0: 
                return "random_seed must be a positive integer"

        no_log = False
        if "no_log" in request.get_json():
            no_log = request.get_json()["no_log"]
            if not isinstance(no_log, bool):
                return "no_log must be a boolean value"
        
        beam_width = None
        if "beam_width" in request.get_json():
            beam_width = request.get_json()["beam_width"]
            if not isinstance(beam_width, int):
                return "beam_width must be integer"
            if beam_width < 1:
                return "beam_width must be an integer > 1"
            if len(ques_list) > 1:
                return "When doing beam_search, batch size must be 1"

        stop_token=50256
        if "stop_token" in request.get_json():
            stop_token = request.get_json()["stop_token"]
            if not isinstance(stop_token, int):
                return "stop_token must be an integer"
        
        length_penalty = 1 
        if "length_penalty" in request.get_json():
            length_penalty = request.get_json()["length_penalty"]
            if not isinstance(length_penalty, float):
                return "length_penalty must be a float"

        try:
            with lock:  # Need to get lock to keep multiple threads from hitting code

                # input
                prompts = []
                ids = []
                for ques in ques_list:
                    if not "ques" in ques:
                        e = "ques argument must be in ques_list"
                        return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))
                    if "id" in ques:
                        ids.append(ques['id'])
                    else:
                        ids.append('0')
                    prompts.append(ques['ques'])

                if any([len(prompt) == 0 for prompt in prompts]):
                    e = "Cannot exist empty prompt in input ques_list"
                    return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))


                context_tokens = [get_tokenizer().tokenize(s) for s in prompts]
                max_len = max([len(tokens) for tokens in context_tokens])
                if max_len + tokens_to_generate > args.seq_length:
                    e = "the sum of input and output seqence lengths shoud be less than {}".format(args.seq_length)
                    return jsonify(fail_exception(str(e), self.AS_ERROR_INPUT_CODE))

                resData = {}
                outputs = []
                if beam_width is not None:
                    MegatronGenerate.send_do_beam_search()  # Tell other ranks we're doing beam_search
                    response, response_seg, response_scores = \
                        beam_search_and_post_process(
                        self.model,
                        prompts=prompts,
                        tokens_to_generate=tokens_to_generate,
                        beam_size = beam_width,
                        add_BOS=add_BOS,
                        stop_token=stop_token,
                        num_return_gen=beam_width,  # Returning whole beam
                        length_penalty=length_penalty,
                        prevent_newline_after_colon=prevent_newline_after_colon
                        )
                    
                else:
                    MegatronGenerate.send_do_generate()  # Tell other ranks we're doing generate
                    print('input:' + str(prompts))
                    response, response_seg, response_logprobs, _ = \
                        generate_and_post_process(
                        self.model,
                        prompts=prompts,
                        tokens_to_generate=tokens_to_generate,
                        return_output_log_probs=logprobs,
                        top_k_sampling=top_k,
                        top_p_sampling=top_p,
                        top_p_decay=top_p_decay,
                        top_p_bound=top_p_bound,
                        temperature=temperature,
                        add_BOS=add_BOS,
                        use_eod_token_for_early_termination=True,
                        stop_on_double_eol=stop_on_double_eol,
                        stop_on_eol=stop_on_eol,
                        prevent_newline_after_colon=prevent_newline_after_colon,
                        random_seed=random_seed)
                    print(response)
                    
                for i, rid in enumerate(ids):
                    res = response[i].strip()
                    res = res[0:res.find('<eod>')]
                    res = res.split('<sep>')[-1]
                    outputs.append({"id": str(rid), "ans": res})
                resData['output'] = outputs
                print("infer finished time: ", datetime.datetime.now())
                return jsonify(success_ques(resData))
        except Exception as e:
            return jsonify(fail_exception(str(e), self.AS_ERROR_GENERATE_CODE))
        

class MegatronServer(object):
    def __init__(self, model):
        self.app = Flask(__name__, static_url_path='')
        api = Api(self.app)
        api.add_resource(MegatronGenerate, '/yuan', resource_class_args=[model])
        
    def run(self, url, port):
        self.app.run(url, threaded=True, debug=False, port=int(os.environ.get("PORT", port)))