eval_humaneval_2x32B.sh 2.67 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/bin/bash

# Runs the "Yuan-2x32B" parameter model inference


if [ "$NODE_RANK" == "" ]; then
    NODE_RANK=0
fi
if [ "$MASTER_ADDR" == "" ]; then
    MASTER_ADDR=localhost
fi
if [ "$NNODES" == "" ]; then
    NNODES=1
fi
if [ "$NUM_GPUS" == "" ]; then
    NUM_GPUS=8
fi
if [ "$TEMP" == "" ]; then
    TEMP=1
fi
if [ "$TOP_P" == "" ]; then
    TOP_P=0.0
fi
if [ "$TOP_K" == "" ]; then
    TOP_K=1
fi
if [ "$DATASET" == "" ]; then
    DATASET=HumanEval.jsonl.gz
fi

WORLD_SIZE=$(($NUM_GPUS*$NNODES))
if [ "$CASE_NAME" == "" ]; then
    CASE_NAME=<Specify case_name>
fi
MASTER_PORT=12342
export CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7'

TOKENIZER_MODEL_PATH=<Specify path to file>
CHECKPOINT_PATH=<Specify CHECKPOINT_PATH>
LOG_PATH=./logs/${CASE_NAME}
OUTPUT_PATH=./output/${CASE_NAME}
PROMPT=HumanEval-instructions.jsonl
MAX_LENGTH=1024

mkdir -p $LOG_PATH
mkdir -p $OUTPUT_PATH


GPT_ARGS="
    --micro-batch-size 1 \
    --tensor-model-parallel-size 1 \
    --pipeline-model-parallel-size 8 \
    --num-layers 24 \
    --hidden-size 2048 \
    --kv-channels 256 \
    --use-lf-gate \
    --lf-conv2d-group 1 \
    --lf-conv2d-num-pad 0 \
    --position-embedding-type rope \
    --no-embedding-dropout \
    --use-flash-attn \
    --flash-attn-drop 0.0 \
    --attention-dropout 0 \
    --fim-rate 0.0 \
    --hidden-dropout 0 \
    --norm-dtype RMSNorm \
    --disable-bias-linear \
    --reset-position-ids \
    --swiglu \
    --num-attention-heads 16 \
    --seq-length 16384 \
    --max-position-embeddings 16384 \
    --no-async-tensor-model-parallel-allreduce \
    --bf16 \
    --rotary-percent 0.5 \
    --rotary-base 40890 \
    --use-attention-router \
    --num-attention-router-heads 16384 \
    --num-experts 32 \
    --no-masked-softmax-fusion \
    --use-fp32-router \
    --moe-router-load-balancing-type none \
    --moe-router-topk 2 \
    --moe-grouped-gemm \
    --bf16 \
    --temp $TEMP \
    --top_p $TOP_P \
    --top_k $TOP_K \
    --seed $RANDOM
"
torchrun --nproc_per_node $NUM_GPUS --master_addr $MASTER_ADDR --node_rank $NODE_RANK --nnodes $NNODES --master_port $MASTER_PORT tasks/humaneval/eval_humaneval.py \
       $GPT_ARGS \
       --tokenizer-type "YuanTokenizer" \
       --tokenizer-model-path $TOKENIZER_MODEL_PATH \
       --human_eval_datapath ./datasets/HUMANEVAL/${DATASET} \
       --textprompts_datapath ./datasets/HUMANEVAL/${PROMPT} \
       --distributed-backend nccl \
       --num_samples_per_task 1 \
       --max_len $MAX_LENGTH \
       --output_path $OUTPUT_PATH \
       --load $CHECKPOINT_PATH 2>&1 | tee ${LOG_PATH}/eval_${CASE_NAME}.log
evaluate_functional_correctness -p datasets/HUMANEVAL/${DATASET}  ${OUTPUT_PATH}/samples.jsonl 2>&1 | tee ${OUTPUT_PATH}/result.txt