image_demo.py 4.41 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) OpenMMLab. All rights reserved.
"""Image Demo.

This script adopts a new infenence class, currently supports image path,
np.array and folder input formats, and will support video and webcam
in the future.

Example:
    Save visualizations and predictions results::

        python demo/image_demo.py demo/demo.jpg rtmdet-s

        python demo/image_demo.py demo/demo.jpg \
        configs/rtmdet/rtmdet_s_8xb32-300e_coco.py \
        --weights rtmdet_s_8xb32-300e_coco_20220905_161602-387a891e.pth

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts bench

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 --texts 'bench . car .'

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365
        --texts 'bench . car .' -c

        python demo/image_demo.py demo/demo.jpg \
        glip_atss_swin-t_a_fpn_dyhead_pretrain_obj365 \
        --texts 'There are a lot of cars here.'

    Visualize prediction results::

        python demo/image_demo.py demo/demo.jpg rtmdet-ins-s --show

        python demo/image_demo.py demo/demo.jpg rtmdet-ins_s_8xb32-300e_coco \
        --show
"""

from argparse import ArgumentParser

from mmengine.logging import print_log

from mmdet.apis import DetInferencer


def parse_args():
    parser = ArgumentParser()
    parser.add_argument(
        'inputs', type=str, help='Input image file or folder path.')
    parser.add_argument(
        'model',
        type=str,
        help='Config or checkpoint .pth file or the model name '
        'and alias defined in metafile. The model configuration '
        'file will try to read from .pth if the parameter is '
        'a .pth weights file.')
    parser.add_argument('--weights', default=None, help='Checkpoint file')
    parser.add_argument(
        '--out-dir',
        type=str,
        default='outputs',
        help='Output directory of images or prediction results.')
    parser.add_argument('--texts', help='text prompt')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--pred-score-thr',
        type=float,
        default=0.3,
        help='bbox score threshold')
    parser.add_argument(
        '--batch-size', type=int, default=1, help='Inference batch size.')
    parser.add_argument(
        '--show',
        action='store_true',
        help='Display the image in a popup window.')
    parser.add_argument(
        '--no-save-vis',
        action='store_true',
        help='Do not save detection vis results')
    parser.add_argument(
        '--no-save-pred',
        action='store_true',
        help='Do not save detection json results')
    parser.add_argument(
        '--print-result',
        action='store_true',
        help='Whether to print the results.')
    parser.add_argument(
        '--palette',
        default='none',
        choices=['coco', 'voc', 'citys', 'random', 'none'],
        help='Color palette used for visualization')
    # only for GLIP
    parser.add_argument(
        '--custom-entities',
        '-c',
        action='store_true',
        help='Whether to customize entity names? '
        'If so, the input text should be '
        '"cls_name1 . cls_name2 . cls_name3 ." format')

    call_args = vars(parser.parse_args())

    if call_args['no_save_vis'] and call_args['no_save_pred']:
        call_args['out_dir'] = ''

    if call_args['model'].endswith('.pth'):
        print_log('The model is a weight file, automatically '
                  'assign the model to --weights')
        call_args['weights'] = call_args['model']
        call_args['model'] = None

    init_kws = ['model', 'weights', 'device', 'palette']
    init_args = {}
    for init_kw in init_kws:
        init_args[init_kw] = call_args.pop(init_kw)

    return init_args, call_args


def main():
    init_args, call_args = parse_args()
    # TODO: Video and Webcam are currently not supported and
    #  may consume too much memory if your input folder has a lot of images.
    #  We will be optimized later.
    inferencer = DetInferencer(**init_args)
    inferencer(**call_args)

    if call_args['out_dir'] != '' and not (call_args['no_save_vis']
                                           and call_args['no_save_pred']):
        print_log(f'results have been saved at {call_args["out_dir"]}')


if __name__ == '__main__':
    main()