Commit cbbee4b7 authored by dongchy920's avatar dongchy920
Browse files

Update README.md, model.properties files

parent 9a0dc1d3
......@@ -30,15 +30,16 @@ docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.13.1-centos7.6-dtk
```
创建容器并挂载目录进行开发:
```
docker run -it --name {name} --shm-size=1024G --device=/dev/kfd --device=/dev/dri/ --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /parastor/DL_DATA:/home/data:ro -v /public/DL_DATA:/home/data2:ro -v /opt/hyhal:/opt/hyhal:ro -v /parastor/home/:/home/ {docker_image} /bin/bash
docker run -it --name {name} --shm-size=1024G --device=/dev/kfd --device=/dev/dri/ --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v {}:{} {docker_image} /bin/bash
# 修改1 {name} 需要改为自定义名称,建议命名{框架_dtk版本_使用者姓名},如果有特殊用途可在命名框架前添加命名
# 修改2 {docker_image} 需要需要创建容器的对应镜像名称,如: pytorch:1.10.0-centos7.6-dtk-23.04-py37-latest【镜像名称:tag名称】
# 修改3 -v 挂载路径到容器指定路径
```
### Dockerfile(方法二)
```
cd docker
docker build --no-cache -t yolov9_pytorch:1.0 .
docker run -it --name {name} --shm-size=1024G --device=/dev/kfd --device=/dev/dri/ --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v /parastor/DL_DATA:/home/data:ro -v /public/DL_DATA:/home/data2:ro -v /opt/hyhal:/opt/hyhal:ro -v /parastor/home/:/home/ {docker_image} /bin/bash
docker run -it --name {name} --shm-size=1024G --device=/dev/kfd --device=/dev/dri/ --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --ulimit memlock=-1:-1 --ipc=host --network host --group-add video -v {}:{} {docker_image} /bin/bash
```
### Anaconda(方法三)
线上节点推荐使用conda进行环境配置。
......@@ -115,26 +116,20 @@ python detect_dual.py --source './data/images/horses.jpg' --img 640 --device 0 -
测试数据:[test](http://images.cocodataset.org/zips/test2017.zip)
测试指标:
```
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.530
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.703
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.578
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.363
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.585
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.691
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.392
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.651
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.700
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.539
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.759
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.847
```
| 模型 | 数据类型 | map0.5:0.95 | map0.5 |
| :------: | :------: | :------: | :------: |
| yolo9-c-converted | 混精 | 0.530 | 0.703 |
| yolo9-e-converted | 混精 | 0.556 | 0.728 |
| yolo9-c | 混精 | 0.530 | 0.703 |
| yolo9-e | 混精 | 0.556 | 0.728 |
| gelan-c | 混精 | 0.526 | 0.695 |
| gelan-e | 混精 | 0.550 | 0.719 |
## 应用场景
### 算法类别
目标检测、目标分割
目标检测
### 热点应用行业
安防交通教育
安防,交通,教育
## 源码仓库及问题反馈
......
# 模型唯一标识
modelCode =
# 模型名称
modelName=yolov9_pytorch
# 模型描述
modelDescription=yolov9是一种基于深度学习的目标检测算法,可以广泛应用于各种计算机视觉和人工智能领域的应用中
# 应用场景
appScenario=推理,训练,金融,交通,教育
# 框架类型
frameType=pytorch
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment