main.cpp 5.92 KB
Newer Older
yaoht's avatar
yaoht committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <SimpleLog.h>
#include <Filesystem.h>
#include <YOLOV9.h>

void MIGraphXSamplesUsage(char *programName)
{
    printf("Usage : %s <index> \n", programName);
    printf("index:\n");
    printf("\t 0) YOLOV9 sample.\n");
    printf("\t 1) YOLOV9 Dynamic sample.\n");
}

void Sample_YOLOV9();
void Sample_YOLOV9_Dynamic();

int main(int argc, char *argv[])
{
    if (argc < 2 || argc > 2)
    {
        MIGraphXSamplesUsage(argv[0]);
        return -1;
    }
    if (!strncmp(argv[1], "-h", 2))
    {
        MIGraphXSamplesUsage(argv[0]);
        return 0;
    }
    switch (*argv[1])
    {
    case '0':
    {
        Sample_YOLOV9();
        break;
    }
    case '1':
    {
        Sample_YOLOV9_Dynamic();
        break;
    }
    default:
    {
        MIGraphXSamplesUsage(argv[0]);
        break;
    }
    }
    return 0;
}

void Sample_YOLOV9()
{
    // 创建YOLOV9检测器
    migraphxSamples::DetectorYOLOV9 detector;
    migraphxSamples::InitializationParameterOfDetector initParamOfDetectorYOLOV9;
    initParamOfDetectorYOLOV9.configFilePath = CONFIG_FILE;
    migraphxSamples::ErrorCode errorCode = detector.Initialize(initParamOfDetectorYOLOV9, false);
    if (errorCode != migraphxSamples::SUCCESS)
    {
        LOG_ERROR(stdout, "fail to initialize detector!\n");
        exit(-1);
    }
    LOG_INFO(stdout, "succeed to initialize detector\n");

    // 读取测试图片
    cv::Mat srcImage = cv::imread("../Resource/Images/image_test.jpg", 1);

    // 静态推理固定尺寸
    std::vector<std::size_t> inputShape = {1, 3, 640, 640};

    // 推理
    std::vector<migraphxSamples::ResultOfDetection> predictions;
    double time1 = cv::getTickCount();
    detector.Detect(srcImage, inputShape, predictions, false);
    double time2 = cv::getTickCount();
    double elapsedTime = (time2 - time1) * 1000 / cv::getTickFrequency();
    LOG_INFO(stdout, "inference time:%f ms\n", elapsedTime);

    // 获取推理结果
    LOG_INFO(stdout, "========== Detection Results ==========\n");
    for (int i = 0; i < predictions.size(); ++i)
    {
        migraphxSamples::ResultOfDetection result = predictions[i];
        cv::rectangle(srcImage, result.boundingBox, cv::Scalar(0, 255, 255), 2);

        std::string label = cv::format("%.2f", result.confidence);
        label = result.className + " " + label;
        int left = predictions[i].boundingBox.x;
        int top = predictions[i].boundingBox.y;
        int baseLine;
        cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
        top = max(top, labelSize.height);
        cv::putText(srcImage, label, cv::Point(left, top - 10), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 255, 255), 2);

        LOG_INFO(stdout, "box:%d %d %d %d,label:%d,confidence:%f\n", predictions[i].boundingBox.x,
                 predictions[i].boundingBox.y, predictions[i].boundingBox.width, predictions[i].boundingBox.height, predictions[i].classID, predictions[i].confidence);
    }
    cv::imwrite("Result.jpg", srcImage);
    LOG_INFO(stdout, "Detection results have been saved to ./Result.jpg\n");
}

void Sample_YOLOV9_Dynamic()
{
    // 创建YOLOV9检测器
    migraphxSamples::DetectorYOLOV9 detector;
    migraphxSamples::InitializationParameterOfDetector initParamOfDetectorYOLOV9;
    initParamOfDetectorYOLOV9.configFilePath = CONFIG_FILE;
    migraphxSamples::ErrorCode errorCode = detector.Initialize(initParamOfDetectorYOLOV9, true);
    if (errorCode != migraphxSamples::SUCCESS)
    {
        LOG_ERROR(stdout, "fail to initialize detector!\n");
        exit(-1);
    }
    LOG_INFO(stdout, "succeed to initialize detector\n");

    // 读取测试图像
    std::vector<cv::Mat> srcImages;
    cv::String folder = "../Resource/Images/DynamicPics";
    std::vector<cv::String> imagePathList;
    cv::glob(folder, imagePathList);
    for (int i = 0; i < imagePathList.size(); ++i)
    {
        cv::Mat srcImage = cv::imread(imagePathList[i], 1);
        srcImages.push_back(srcImage);
    }

    // 设置动态推理shape
    std::vector<std::vector<std::size_t>> inputShapes;
    inputShapes.push_back({1, 3, 416, 416});
    inputShapes.push_back({1, 3, 608, 608});

    for (int i = 0; i < srcImages.size(); ++i)
    {
        // 推理
        std::vector<migraphxSamples::ResultOfDetection> predictions;
        double time1 = cv::getTickCount();
        detector.Detect(srcImages[i], inputShapes[i], predictions, true);
        double time2 = cv::getTickCount();
        double elapsedTime = (time2 - time1) * 1000 / cv::getTickFrequency();
        LOG_INFO(stdout, "inference image%d time:%f ms\n", i, elapsedTime);

        // 获取推理结果
        LOG_INFO(stdout, "========== Detection Image%d Results ==========\n", i);
        for (int j = 0; j < predictions.size(); ++j)
        {
            migraphxSamples::ResultOfDetection result = predictions[j];
            cv::rectangle(srcImages[i], result.boundingBox, cv::Scalar(0, 255, 255), 2);

            std::string label = cv::format("%.2f", result.confidence);
            label = result.className + " " + label;
            int left = predictions[j].boundingBox.x;
            int top = predictions[j].boundingBox.y;
            int baseLine;
            cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
            top = max(top, labelSize.height);
            cv::putText(srcImages[i], label, cv::Point(left, top - 10), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(0, 255, 255), 2);

            LOG_INFO(stdout, "box:%d %d %d %d,label:%d,confidence:%f\n", predictions[j].boundingBox.x,
                     predictions[j].boundingBox.y, predictions[j].boundingBox.width, predictions[j].boundingBox.height, predictions[j].classID, predictions[j].confidence);
        }
        std::string imgName = cv::format("Result%d.jpg", i);
        cv::imwrite(imgName, srcImages[i]);
        LOG_INFO(stdout, "Detection results have been saved to ./Result%d.jpg\n", i);
    }
}