YoloV8_infer_migraphx.py 11.6 KB
Newer Older
yaoht's avatar
yaoht committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# -*- coding: utf-8 -*-
import os
import time
import migraphx
import argparse
import cv2
import numpy as np


class YOLOv8:
    """YOLOv8 object detection model class for handling inference and visualization."""

    def __init__(self, model_path, dynamic=False, conf_thres=0.5, iou_thres=0.5):
        """
        Initializes an instance of the YOLOv8 class.

        Args:
            model_path: Path to the ONNX model.
            dynamic: whether use dynamic inference.
            conf_thres: Confidence threshold for filtering detections.
            iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression.
        """
        self.confThreshold = conf_thres
        self.nmsThreshold = iou_thres
        self.isDynamic = dynamic
        # 获取模型检测的类别信息
        self.classNames = list(map(lambda x: x.strip(), open('../Resource/Models/coco.names', 'r').readlines()))

        # 解析推理模型
        if self.isDynamic:
            maxInput={"images":[1,3,1024,1024]}
            self.model = migraphx.parse_onnx(model_path, map_input_dims=maxInput)

            # 获取模型输入/输出节点信息
            print("inputs:")
            inputs = self.model.get_inputs()
            for key,value in inputs.items():
                print("{}:{}".format(key,value))
            
            print("outputs:")
            outputs = self.model.get_outputs()
            for key,value in outputs.items():
                print("{}:{}".format(key,value))

            # 获取模型的输入name
            self.inputName = "images"
            
            # 获取模型的输入尺寸
            inputShape = inputShape=inputs[self.inputName].lens()
            self.inputHeight = int(inputShape[2])
            self.inputWidth = int(inputShape[3])
            print("inputName:{0} \ninputShape:{1}".format(self.inputName, inputShape))
        else:
            self.model = migraphx.parse_onnx(model_path) 
            # 获取模型输入/输出节点信息
            print("inputs:")
            inputs = self.model.get_inputs()
            for key,value in inputs.items():
                print("{}:{}".format(key,value))
            
            print("outputs:")
            outputs = self.model.get_outputs()
            for key,value in outputs.items():
                print("{}:{}".format(key,value))

            # 获取模型的输入name
            self.inputName = "images"

            # 获取模型的输入尺寸
            inputShape = inputShape=inputs[self.inputName].lens()
            self.inputHeight = int(inputShape[2])
            self.inputWidth = int(inputShape[3])
            print("inputName:{0} \ninputShape:{1}".format(self.inputName, inputShape))
        
        # 模型编译
        self.model.compile(t=migraphx.get_target("gpu"), device_id=0)  # device_id: 设置GPU设备,默认为0号设备
        print("Success to compile")

        # Generate a color palette for the classes
        self.color_palette = np.random.uniform(0, 255, size=(len(self.classNames), 3))

    def draw_detections(self, img, box, score, class_id):
        """
        Draws bounding boxes and labels on the input image based on the detected objects.

        Args:
            img: The input image to draw detections on.
            box: Detected bounding box.
            score: Corresponding detection score.
            class_id: Class ID for the detected object.

        Returns:
            None
        """

        # Extract the coordinates of the bounding box
        x1, y1, w, h = box

        # Retrieve the color for the class ID
        color = self.color_palette[class_id]

        # Draw the bounding box on the image
        cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2)

        # Create the label text with class name and score
        label = f'{self.classNames[class_id]}: {score:.2f}'

        # Calculate the dimensions of the label text
        (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)

        # Calculate the position of the label text
        label_x = x1
        label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10

        # Draw a filled rectangle as the background for the label text
        cv2.rectangle(img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color,
                      cv2.FILLED)

        # Draw the label text on the image
        cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA)

    def preprocess(self, image):
        """
        Preprocesses the input image before performing inference.

        Returns:
            image_data: Preprocessed image data ready for inference.
        """
        # Read the input image using OpenCV
        # self.img = cv2.imread(self.input_image)
        self.img = image

        # Get the height and width of the input image
        self.img_height, self.img_width = self.img.shape[:2]

        # Convert the image color space from BGR to RGB
        img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB)

        # Resize the image to match the input shape
        img = cv2.resize(img, (self.inputWidth, self.inputHeight))

        # Normalize the image data by dividing it by 255.0
        image_data = np.array(img) / 255.0

        # Transpose the image to have the channel dimension as the first dimension
        image_data = np.transpose(image_data, (2, 0, 1))  # Channel first

        # Expand the dimensions of the image data to match the expected input shape
        image_data = np.expand_dims(image_data, axis=0).astype(np.float32)

        # Make array memery contiguous
        image_data = np.ascontiguousarray(image_data)

        # Return the preprocessed image data
        return image_data

    def postprocess(self, input_image, output):
        """
        Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs.

        Args:
            input_image (numpy.ndarray): The input image.
            output (numpy.ndarray): The output of the model.

        Returns:
            numpy.ndarray: The input image with detections drawn on it.
        """

        # Transpose and squeeze the output to match the expected shape
        outputs = np.transpose(np.squeeze(output[0]))

        # Get the number of rows in the outputs array
        rows = outputs.shape[0]

        # Lists to store the bounding boxes, scores, and class IDs of the detections
        boxes = []
        scores = []
        class_ids = []

        # Calculate the scaling factors for the bounding box coordinates
        x_factor = self.img_width / self.inputWidth
        y_factor = self.img_height / self.inputHeight

        # Iterate over each row in the outputs array
        for i in range(rows):
            # Extract the class scores from the current row
            classes_scores = outputs[i][4:]

            # Find the maximum score among the class scores
            max_score = np.amax(classes_scores)

            # If the maximum score is above the confidence threshold
            if max_score >= self.confThreshold:
                # Get the class ID with the highest score
                class_id = np.argmax(classes_scores)

                # Extract the bounding box coordinates from the current row
                x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]

                # Calculate the scaled coordinates of the bounding box
                left = int((x - w / 2) * x_factor)
                top = int((y - h / 2) * y_factor)
                width = int(w * x_factor)
                height = int(h * y_factor)

                # Add the class ID, score, and box coordinates to the respective lists
                class_ids.append(class_id)
                scores.append(max_score)
                boxes.append([left, top, width, height])

        # Apply non-maximum suppression to filter out overlapping bounding boxes
        indices = cv2.dnn.NMSBoxes(boxes, scores, self.confThreshold, self.nmsThreshold)

        # Iterate over the selected indices after non-maximum suppression
        for i in indices:
            # Get the box, score, and class ID corresponding to the index
            box = boxes[i]
            score = scores[i]
            class_id = class_ids[i]

            # Draw the detection on the input image
            self.draw_detections(input_image, box, score, class_id)

        # Return the modified input image
        return input_image

    def detect(self, image, input_shape=None):
        if(self.isDynamic):
            self.inputWidth = input_shape[3]
            self.inputHeight = input_shape[2]
        # 输入图片预处理
        input_img = self.preprocess(image)

        # 执行推理
        start = time.time()
        result = self.model.run({self.inputName: input_img})
        print('net forward time: {:.4f}'.format(time.time() - start))
        # 模型输出结果后处理
        dstimg = self.postprocess(image, result)

        return dstimg


def read_images(image_path):
    image_lists = []
    
    for image_name in os.listdir(image_path):
        image = cv2.imread(image_path +"/" + image_name, 1)
        image_lists.append(image)
        
    return image_lists

def yolov8_Static(imgpath, modelpath, confThreshold, nmsThreshold):
    yolov8_detector = YOLOv8(modelpath, False, conf_thres=confThreshold,
                             iou_thres=nmsThreshold)
    srcimg = cv2.imread(imgpath, 1)

    dstimg = yolov8_detector.detect(srcimg)

    # 保存检测结果
    cv2.imwrite("./Result.jpg", dstimg)
    print("Success to save result")


def yolov8_dynamic(imgpath, modelpath, confThreshold, nmsThreshold):
    # 设置动态输入shape
    input_shapes = []
    input_shapes.append([1,3,416,416])
    input_shapes.append([1,3,608,608])
    
    # 读取测试图像
    image_lists = read_images(imgpath)
    
    # 推理
    yolov8_detector = YOLOv8(modelpath, True, 
                                    conf_thres=confThreshold, iou_thres=nmsThreshold)
    for i, image in enumerate(image_lists):
        print("Start to inference image{}".format(i))
        dstimg = yolov8_detector.detect(image, input_shapes[i])
        
        # 保存检测结果
        result_name = "Result{}.jpg".format(i)
        cv2.imwrite(result_name, dstimg)
    
    print("Success to save results")

if __name__ == '__main__':
    # Create an argument parser to handle command-line arguments
    parser = argparse.ArgumentParser()
    parser.add_argument('--imgPath', type=str, default='../Resource/Images/image_test.jpg', help="image path")
    parser.add_argument('--imgFolderPath', type=str, default='../Resource/Images/DynamicPics', help="image folder path")
    parser.add_argument('--staticModelPath', type=str, default='../Resource/Models/yolov8n_static.onnx', help="static onnx filepath")
    parser.add_argument('--dynamicModelPath', type=str, default='../Resource/Models/yolov8n_dynamic.onnx', help="dynamic onnx filepath")
    parser.add_argument('--confThreshold', default=0.5, type=float, help='class confidence')
    parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
    parser.add_argument("--staticInfer",action="store_true",default=False,help="Performing static inference")
    parser.add_argument("--dynamicInfer",action="store_true",default=False,help="Performing dynamic inference")
    args = parser.parse_args()
    
    # 静态推理
    if args.staticInfer:
        yolov8_Static(args.imgPath, args.staticModelPath, args.confThreshold, args.nmsThreshold)
    # 动态推理
    if args.dynamicInfer:
        yolov8_dynamic(args.imgFolderPath, args.dynamicModelPath, args.confThreshold, args.nmsThreshold)