YoloV7_infer_migraphx.py 5.47 KB
Newer Older
Your Name's avatar
Your Name committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# -*- coding: utf-8 -*-
import cv2
import numpy as np
import os
import argparse
import time
import migraphx

class YOLOv7:
    def __init__(self, path, obj_thres=0.5, conf_thres=0.25, iou_thres=0.5):
        self.objectThreshold = obj_thres
        self.confThreshold = conf_thres
        self.nmsThreshold = iou_thres
        
        # 获取模型检测的类别信息
        self.classNames = list(map(lambda x: x.strip(), open('./weights/coco.names', 'r').readlines()))

        # 解析推理模型
        self.model = migraphx.parse_onnx(path)
      
        # 获取模型的输入name
        self.inputName = self.model.get_parameter_names()[0]
        
        # 获取模型的输入尺寸
        inputShape = self.model.get_parameter_shapes()[self.inputName].lens()
        self.inputHeight = int(inputShape[2])
        self.inputWidth = int(inputShape[3])
        print("inputName:{0} \ninputShape:{1}".format(self.inputName,inputShape))
        
    def detect(self, image):
        # 输入图片预处理
        input_img = self.prepare_input(image)
      
        # 模型编译
        self.model.compile(t=migraphx.get_target("gpu"), device_id=0)  # device_id: 设置GPU设备,默认为0号设备
        print("Success to compile")
        # 执行推理
        print("Start to inference")
        start = time.time()
        result = self.model.run({self.model.get_parameter_names()[0]: migraphx.argument(input_img)})
        print('net forward time: {:.4f}'.format(time.time() - start))
        # 模型输出结果后处理
        boxes, scores, class_ids = self.process_output(result)

        return boxes, scores, class_ids

    def prepare_input(self, image):
        self.img_height, self.img_width = image.shape[:2]
        input_img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        input_img = cv2.resize(input_img, (self.inputWidth, self.inputHeight))
        input_img = input_img.transpose(2, 0, 1)
        input_img = np.expand_dims(input_img, 0)
        input_img = np.ascontiguousarray(input_img)
        input_img = input_img.astype(np.float32)
        input_img = input_img / 255
         
        return input_img

    def process_output(self, output):
        predictions = np.squeeze(output[0])

        # 筛选包含物体的anchor
        obj_conf = predictions[:, 4]
        predictions = predictions[obj_conf > self.objectThreshold]
        obj_conf = obj_conf[obj_conf > self.objectThreshold]

        # 筛选大于置信度阈值的anchor
        predictions[:, 5:] *= obj_conf[:, np.newaxis]
        scores = np.max(predictions[:, 5:], axis=1)
        valid_scores = scores > self.confThreshold
        predictions = predictions[valid_scores]
        scores = scores[valid_scores]

        # 获取最高置信度分数对应的类别ID
        class_ids = np.argmax(predictions[:, 5:], axis=1)

        # 获取每个物体对应的anchor
        boxes = self.extract_boxes(predictions)

        # 执行非极大值抑制消除冗余anchor
        indices = cv2.dnn.NMSBoxes(boxes.tolist(), scores.tolist(), self.confThreshold, self.nmsThreshold).flatten()
        
        return boxes[indices], scores[indices], class_ids[indices]

    def extract_boxes(self, predictions):
        # 获取anchor的坐标信息
        boxes = predictions[:, :4]

        # 将anchor的坐标信息映射到输入image
        boxes = self.rescale_boxes(boxes)

        # 格式转换
        boxes_ = np.copy(boxes)
        boxes_[..., 0] = boxes[..., 0] - boxes[..., 2] * 0.5
        boxes_[..., 1] = boxes[..., 1] - boxes[..., 3] * 0.5
        return boxes_

    def rescale_boxes(self, boxes):

        # 对anchor尺寸进行变换
        input_shape = np.array([self.inputWidth, self.inputHeight, self.inputWidth, self.inputHeight])
        boxes = np.divide(boxes, input_shape, dtype=np.float32)
        boxes *= np.array([self.img_width, self.img_height, self.img_width, self.img_height])
        return boxes

    def draw_detections(self, image, boxes, scores, class_ids):
        for box, score, class_id in zip(boxes, scores, class_ids):
            cx, cy, w, h = box.astype(int)

            # 绘制检测物体框
            cv2.rectangle(image, (cx, cy), (cx + w, cy + h), (0, 255, 255), thickness=2)
            label = self.classNames[class_id]
            label = f'{label} {int(score * 100)}%'
            labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
            cv2.putText(image, label, (cx, cy - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), thickness=2)
        return image

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--imgpath', type=str, default='./images/bus.jpg', help="image path")
    parser.add_argument('--modelpath', type=str, default='./weights/yolov7-tiny.onnx',help="onnx filepath")
    parser.add_argument('--objectThreshold', default=0.5, type=float, help='class confidence')
    parser.add_argument('--confThreshold', default=0.25, type=float, help='class confidence')
    parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
    args = parser.parse_args()

    yolov7_detector = YOLOv7(args.modelpath, obj_thres=args.objectThreshold, conf_thres=args.confThreshold, iou_thres=args.nmsThreshold)
    srcimg = cv2.imread(args.imgpath, 1)

    boxes, scores, class_ids = yolov7_detector.detect(srcimg)

    dstimg = yolov7_detector.draw_detections(srcimg, boxes, scores, class_ids)
    
    # 保存检测结果
    cv2.imwrite("./Result.jpg", dstimg)
    print("Success to save result")