infer.py 6.85 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

# add python path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

# ignore warning log
import warnings
warnings.filterwarnings('ignore')
import glob
import ast

import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.engine import Trainer
from ppdet.utils.check import check_gpu, check_npu, check_xpu, check_mlu, check_version, check_config
from ppdet.utils.cli import ArgsParser, merge_args
from ppdet.slim import build_slim_model

from ppdet.utils.logger import setup_logger
logger = setup_logger('train')


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
        "--infer_dir",
        type=str,
        default=None,
        help="Directory for images to perform inference on.")
    parser.add_argument(
        "--infer_img",
        type=str,
        default=None,
        help="Image path, has higher priority over --infer_dir")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output visualization files.")
    parser.add_argument(
        "--draw_threshold",
        type=float,
        default=0.5,
        help="Threshold to reserve the result for visualization.")
    parser.add_argument(
        "--slim_config",
        default=None,
        type=str,
        help="Configuration file of slim method.")
    parser.add_argument(
        "--use_vdl",
        type=bool,
        default=False,
        help="Whether to record the data to VisualDL.")
    parser.add_argument(
        '--vdl_log_dir',
        type=str,
        default="vdl_log_dir/image",
        help='VisualDL logging directory for image.')
    parser.add_argument(
        "--save_results",
        type=bool,
        default=False,
        help="Whether to save inference results to output_dir.")
    parser.add_argument(
        "--slice_infer",
        action='store_true',
        help="Whether to slice the image and merge the inference results for small object detection."
    )
    parser.add_argument(
        '--slice_size',
        nargs='+',
        type=int,
        default=[640, 640],
        help="Height of the sliced image.")
    parser.add_argument(
        "--overlap_ratio",
        nargs='+',
        type=float,
        default=[0.25, 0.25],
        help="Overlap height ratio of the sliced image.")
    parser.add_argument(
        "--combine_method",
        type=str,
        default='nms',
        help="Combine method of the sliced images' detection results, choose in ['nms', 'nmm', 'concat']."
    )
    parser.add_argument(
        "--match_threshold",
        type=float,
        default=0.6,
        help="Combine method matching threshold.")
    parser.add_argument(
        "--match_metric",
        type=str,
        default='ios',
        help="Combine method matching metric, choose in ['iou', 'ios'].")
    parser.add_argument(
        "--visualize",
        type=ast.literal_eval,
        default=True,
        help="Whether to save visualize results to output_dir.")
    args = parser.parse_args()
    return args


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    logger.info("Found {} inference images in total.".format(len(images)))

    return images


def run(FLAGS, cfg):
    # build trainer
    trainer = Trainer(cfg, mode='test')

    # load weights
    trainer.load_weights(cfg.weights)

    # get inference images
    images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)

    # inference
    if FLAGS.slice_infer:
        trainer.slice_predict(
            images,
            slice_size=FLAGS.slice_size,
            overlap_ratio=FLAGS.overlap_ratio,
            combine_method=FLAGS.combine_method,
            match_threshold=FLAGS.match_threshold,
            match_metric=FLAGS.match_metric,
            draw_threshold=FLAGS.draw_threshold,
            output_dir=FLAGS.output_dir,
            save_results=FLAGS.save_results,
            visualize=FLAGS.visualize)
    else:
        trainer.predict(
            images,
            draw_threshold=FLAGS.draw_threshold,
            output_dir=FLAGS.output_dir,
            save_results=FLAGS.save_results,
            visualize=FLAGS.visualize)


def main():
    FLAGS = parse_args()
    cfg = load_config(FLAGS.config)
    merge_args(cfg, FLAGS)
    merge_config(FLAGS.opt)

    # disable npu in config by default
    if 'use_npu' not in cfg:
        cfg.use_npu = False

    # disable xpu in config by default
    if 'use_xpu' not in cfg:
        cfg.use_xpu = False

    if 'use_gpu' not in cfg:
        cfg.use_gpu = False

    # disable mlu in config by default
    if 'use_mlu' not in cfg:
        cfg.use_mlu = False

    if cfg.use_gpu:
        place = paddle.set_device('gpu')
    elif cfg.use_npu:
        place = paddle.set_device('npu')
    elif cfg.use_xpu:
        place = paddle.set_device('xpu')
    elif cfg.use_mlu:
        place = paddle.set_device('mlu')
    else:
        place = paddle.set_device('cpu')

    if FLAGS.slim_config:
        cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')

    check_config(cfg)
    check_gpu(cfg.use_gpu)
    check_npu(cfg.use_npu)
    check_xpu(cfg.use_xpu)
    check_mlu(cfg.use_mlu)
    check_version()

    run(FLAGS, cfg)


if __name__ == '__main__':
    main()