export_model.py 3.16 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

# add python path of PaddleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

# ignore warning log
import warnings
warnings.filterwarnings('ignore')

import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.utils.check import check_gpu, check_version, check_config
from ppdet.utils.cli import ArgsParser
from ppdet.engine import Trainer
from ppdet.slim import build_slim_model

from ppdet.utils.logger import setup_logger
logger = setup_logger('export_model')


def parse_args():
    parser = ArgsParser()
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output_inference",
        help="Directory for storing the output model files.")
    parser.add_argument(
        "--export_serving_model",
        type=bool,
        default=False,
        help="Whether to export serving model or not.")
    parser.add_argument(
        "--slim_config",
        default=None,
        type=str,
        help="Configuration file of slim method.")
    args = parser.parse_args()
    return args


def run(FLAGS, cfg):
    # build detector
    trainer = Trainer(cfg, mode='test')

    # load weights
    trainer.load_weights(cfg.weights)

    # export model
    trainer.export(FLAGS.output_dir)

    if FLAGS.export_serving_model:
        from paddle_serving_client.io import inference_model_to_serving
        model_name = os.path.splitext(os.path.split(cfg.filename)[-1])[0]

        inference_model_to_serving(
            dirname="{}/{}".format(FLAGS.output_dir, model_name),
            serving_server="{}/{}/serving_server".format(FLAGS.output_dir,
                                                         model_name),
            serving_client="{}/{}/serving_client".format(FLAGS.output_dir,
                                                         model_name),
            model_filename="model.pdmodel",
            params_filename="model.pdiparams")


def main():
    paddle.set_device("cpu")
    FLAGS = parse_args()
    cfg = load_config(FLAGS.config)
    merge_config(FLAGS.opt)

    if FLAGS.slim_config:
        cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')

    # FIXME: Temporarily solve the priority problem of FLAGS.opt
    merge_config(FLAGS.opt)
    check_config(cfg)
    if 'use_gpu' not in cfg:
        cfg.use_gpu = False
    check_gpu(cfg.use_gpu)
    check_version()

    run(FLAGS, cfg)


if __name__ == '__main__':
    main()