box_distribution.py 4.27 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import matplotlib.pyplot as plt
import json
import numpy as np
import argparse
from pycocotools.coco import COCO
from tqdm import tqdm


def median(data):
    data.sort()
    mid = len(data) // 2
    median = (data[mid] + data[~mid]) / 2
    return median


def draw_distribution(width, height, out_path):
    w_bins = int((max(width) - min(width)) // 10)
    h_bins = int((max(height) - min(height)) // 10)
    plt.figure()
    plt.subplot(221)
    plt.hist(width, bins=w_bins, color='green')
    plt.xlabel('Width rate *1000')
    plt.ylabel('number')
    plt.title('Distribution of Width')
    plt.subplot(222)
    plt.hist(height, bins=h_bins, color='blue')
    plt.xlabel('Height rate *1000')
    plt.title('Distribution of Height')
    plt.savefig(out_path)
    print(f'Distribution saved as {out_path}')
    plt.show()


def get_ratio_infos(jsonfile, out_img, eval_size, small_stride):
    coco = COCO(annotation_file=jsonfile)
    allannjson = json.load(open(jsonfile, 'r'))
    be_im_id = allannjson['annotations'][0]['image_id'] 
    be_im_w = []
    be_im_h = []
    ratio_w = []
    ratio_h = []
    im_wid,im_hei=[],[]
    for ann in tqdm(allannjson['annotations']):
        if ann['iscrowd']:
            continue
        x0, y0, w, h = ann['bbox'][:]
        if be_im_id == ann['image_id']:
            be_im_w.append(w)
            be_im_h.append(h)
        else:
            im_w = coco.imgs[be_im_id]['width']
            im_h = coco.imgs[be_im_id]['height']
            im_wid.append(im_w)
            im_hei.append(im_h)
            im_m_w = np.mean(be_im_w)
            im_m_h = np.mean(be_im_h)
            dis_w = im_m_w / im_w
            dis_h = im_m_h / im_h
            ratio_w.append(dis_w)
            ratio_h.append(dis_h)
            be_im_id = ann['image_id']
            be_im_w = [w]
            be_im_h = [h]
        

    im_w = coco.imgs[be_im_id]['width']
    im_h = coco.imgs[be_im_id]['height']
    im_wid.append(im_w)
    im_hei.append(im_h)
    all_im_m_w = np.mean(im_wid)
    all_im_m_h = np.mean(im_hei)


    im_m_w = np.mean(be_im_w)
    im_m_h = np.mean(be_im_h)
    dis_w = im_m_w / im_w
    dis_h = im_m_h / im_h
    ratio_w.append(dis_w)
    ratio_h.append(dis_h)
    mid_w = median(ratio_w)
    mid_h = median(ratio_h)

    reg_ratio = []
    ratio_all = ratio_h + ratio_w
    for r in ratio_all:
        if r < 0.2:
            reg_ratio.append(r)
        elif r < 0.4:
            reg_ratio.append(r/2)
        else:
            reg_ratio.append(r/4)
    reg_ratio = sorted(reg_ratio)
    max_ratio = reg_ratio[int(0.95*len(reg_ratio))]
    reg_max = round(max_ratio*eval_size/small_stride)
    
    ratio_w = [i * 1000 for i in ratio_w]
    ratio_h = [i * 1000 for i in ratio_h]
    print(f'Suggested reg_range[1] is {reg_max+1}' )
    print(f'Mean of all img_w is {all_im_m_w}')
    print(f'Mean of all img_h is {all_im_m_h}') 
    print(f'Median of ratio_w is {mid_w}')
    print(f'Median of ratio_h is {mid_h}')
    print('all_img with box: ', len(ratio_h))
    print('all_ann: ', len(allannjson['annotations']))
    draw_distribution(ratio_w, ratio_h, out_img)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--json_path', type=str, default=None, help="Dataset json path.")
    parser.add_argument(
        '--eval_size', type=int, default=640, help="eval size.")
    parser.add_argument(
        '--small_stride', type=int, default=8, help="smallest stride.")
    parser.add_argument(
        '--out_img',
        type=str,
        default='box_distribution.jpg',
        help="Name of distibution img.")
    args = parser.parse_args()

    get_ratio_infos(args.json_path, args.out_img, args.eval_size, args.small_stride)


if __name__ == "__main__":
    main()