benchmark_train.sh 11.2 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
#!/bin/bash
source test_tipc/utils_func.sh

# set env
python=python
export model_branch=`git symbolic-ref HEAD 2>/dev/null | cut -d"/" -f 3`
export model_commit=$(git log|head -n1|awk '{print $2}')
export str_tmp=$(echo `pip list|grep paddlepaddle-gpu|awk -F ' ' '{print $2}'`)
export frame_version=${str_tmp%%.post*}
export frame_commit=$(echo `${python} -c "import paddle;print(paddle.version.commit)"`)

# run benchmark sh
# Usage:
# bash run_benchmark_train.sh config.txt params
# or
# bash run_benchmark_train.sh config.txt

function func_parser_params(){
    strs=$1
    IFS="="
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}

function set_dynamic_epoch(){
    string=$1
    num=$2
    _str=${string:1:6}
    IFS="C"
    arr=(${_str})
    M=${arr[0]}
    P=${arr[1]}
    ep=`expr $num \* $P`
    echo $ep
}

function func_sed_params(){
    filename=$1
    line=$2
    param_value=$3
    params=`sed -n "${line}p" $filename`
    IFS=":"
    array=(${params})
    key=${array[0]}
    new_params="${key}:${param_value}"
    IFS=";"
    cmd="sed -i '${line}s/.*/${new_params}/' '${filename}'"
    eval $cmd
}

function set_gpu_id(){
    string=$1
    _str=${string:1:6}
    IFS="C"
    arr=(${_str})
    M=${arr[0]}
    P=${arr[1]}
    gn=`expr $P - 1`
    gpu_num=`expr $gn / $M`
    seq=`seq -s "," 0 $gpu_num`
    echo $seq
}

function get_repo_name(){
    IFS=";"
    cur_dir=$(pwd)
    IFS="/"
    arr=(${cur_dir})
    echo ${arr[-1]}
}

FILENAME=$1
# copy FILENAME as new
new_filename="./test_tipc/benchmark_train.txt"
cmd=`yes|cp $FILENAME $new_filename`
FILENAME=$new_filename
# MODE must be one of ['benchmark_train']
MODE=$2
PARAMS=$3
# bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt  benchmark_train dynamic_bs8_null_DP_N1C1
IFS=$'\n'
# parser params from train_benchmark.txt
dataline=`cat $FILENAME`
# parser params
IFS=$'\n'
lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}")

# 获取benchmark_params所在的行数
line_num=`grep -n -w "train_benchmark_params" $FILENAME  | cut -d ":" -f 1`
# for train log parser
batch_size=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
fp_items=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
epoch=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
repeat=$(func_parser_value "${lines[line_num]}")

line_num=`expr $line_num + 1`
profile_option_key=$(func_parser_key "${lines[line_num]}")
profile_option_params=$(func_parser_value "${lines[line_num]}")
profile_option="${profile_option_key}:${profile_option_params}"

line_num=`expr $line_num + 1`
flags_value=$(func_parser_value "${lines[line_num]}")
if [ ${flags_value} != "null" ];then
    # set flags
    IFS=";"
    flags_list=(${flags_value})
    for _flag in ${flags_list[*]}; do
        cmd="export ${_flag}"
        eval $cmd
    done
fi

# set log_name
repo_name=$(get_repo_name )
SAVE_LOG=${BENCHMARK_LOG_DIR:-$(pwd)}   # */benchmark_log
mkdir -p "${SAVE_LOG}/benchmark_log/"
status_log="${SAVE_LOG}/benchmark_log/results.log"

# The number of lines in which train params can be replaced.
line_python=3
line_gpuid=4
line_precision=6
line_epoch=7
line_batchsize=9
line_profile=13
line_eval_py=24
line_export_py=30

func_sed_params "$FILENAME" "${line_eval_py}" "null"
func_sed_params "$FILENAME" "${line_export_py}" "null"
func_sed_params "$FILENAME" "${line_python}"  "${python}"

# if params
if  [ ! -n "$PARAMS" ] ;then
    # PARAMS input is not a word.
    IFS="|"
    batch_size_list=(${batch_size})
    fp_items_list=(${fp_items})
    device_num="N1C4"
    device_num_list=($device_num)
    run_mode="DP"
elif [[ ${PARAMS} = "dynamicTostatic" ]] ;then
    IFS="|"
    model_type=$PARAMS
    batch_size_list=(${batch_size})
    fp_items_list=(${fp_items})
    device_num="N1C4"
    device_num_list=($device_num)
    run_mode="DP"
else
    # parser params from input: modeltype_bs${bs_item}_${fp_item}_${run_mode}_${device_num}
    IFS="_"
    params_list=(${PARAMS})
    model_type=${params_list[0]}
    batch_size=${params_list[1]}
    batch_size=`echo  ${batch_size} | tr -cd "[0-9]" `
    precision=${params_list[2]}
    run_mode=${params_list[3]}
    device_num=${params_list[4]}
    IFS=";"

    if [ ${precision} = "null" ];then
        precision="fp32"
    fi

    fp_items_list=($precision)
    batch_size_list=($batch_size)
    device_num_list=($device_num)
fi

if [[ ${model_name} =~ "yolov5" ]];then 
   echo "${model_name} run unset MosaicPerspective and RandomHSV"
   eval "sed -i '10c 10c    - MosaicPerspective: {mosaic_prob: 0.0, target_size: *input_size, scale: 0.9, mixup_prob: 0.1, copy_paste_prob: 0.1}' configs/yolov5/_base_/yolov5_reader_high_aug.yml"
   eval "sed -i 's/10c//' configs/yolov5/_base_/yolov5_reader_high_aug.yml"
   eval "sed -i 's/^    - RandomHSV: /#&/' configs/yolov5/_base_/yolov5_reader_high_aug.yml"
fi

# for log name
to_static=""
# parse "to_static" options and modify trainer into "to_static_trainer"
if [[ ${model_type} = "dynamicTostatic" ]];then
    to_static="d2sT_"
    sed -i 's/trainer:norm_train/trainer:to_static_train/g' $FILENAME
    #yolov5 and yolov7 static need MosaicPerspective
    eval "sed -i '10c 10c    - MosaicPerspective: {mosaic_prob: 1.0, target_size: *input_size, scale: 0.9, mixup_prob: 0.1, copy_paste_prob: 0.1}' configs/yolov5/_base_/yolov5_reader_high_aug.yml"
    eval "sed -i 's/10c//' configs/yolov5/_base_/yolov5_reader_high_aug.yml"
    eval "sed -i '10c 10c    - MosaicPerspective: {mosaic_prob: 1.0, target_size: *input_size, scale: 0.9, mixup_prob: 0.1, copy_paste_prob: 0.1}' configs/yolov7/_base_/yolov7_reader.yml"
    eval "sed -i 's/10c//' configs/yolov7/_base_/yolov7_reader.yml"
fi



if [[ ${model_name} =~ "higherhrnet" ]] || [[ ${model_name} =~ "hrnet" ]] || [[ ${model_name} =~ "tinypose" ]] || [[ ${model_name} =~ "ppyoloe_r_crn_s_3x_spine_coco" ]] ;then
    echo "${model_name} run on full coco dataset"
    epoch=$(set_dynamic_epoch $device_num $epoch)
else
    epoch=1
    repeat=$(set_dynamic_epoch $device_num $repeat)
    eval "sed -i '10c\  repeat: ${repeat}' configs/datasets/coco_detection.yml"
    eval "sed -i '10c\  repeat: ${repeat}' configs/datasets/coco_instance.yml"
    eval "sed -i '10c\  repeat: ${repeat}' configs/datasets/mot.yml"
fi


IFS="|"
for batch_size in ${batch_size_list[*]}; do
    for precision in ${fp_items_list[*]}; do
        for device_num in ${device_num_list[*]}; do
            # sed batchsize and precision
            func_sed_params "$FILENAME" "${line_precision}" "$precision"
            func_sed_params "$FILENAME" "${line_batchsize}" "$MODE=$batch_size"
            func_sed_params "$FILENAME" "${line_epoch}" "$MODE=$epoch"
            gpu_id=$(set_gpu_id $device_num)

            if [ ${#gpu_id} -le 1 ];then
                log_path="$SAVE_LOG/profiling_log"
                mkdir -p $log_path
                log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}profiling"
                func_sed_params "$FILENAME" "${line_gpuid}" "0"  # sed used gpu_id
                # set profile_option params
                tmp=`sed -i "${line_profile}s/.*/${profile_option}/" "${FILENAME}"`

                # run test_train_inference_python.sh
                cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
                echo $cmd
                eval $cmd
                eval "cat ${log_path}/${log_name}"

                # without profile
                log_path="$SAVE_LOG/train_log"
                speed_log_path="$SAVE_LOG/index"
                mkdir -p $log_path
                mkdir -p $speed_log_path
                log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log"
                speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed"
                func_sed_params "$FILENAME" "${line_profile}" "null"  # sed profile_id as null
                cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
                echo $cmd
                job_bt=`date '+%Y%m%d%H%M%S'`
                eval $cmd
                job_et=`date '+%Y%m%d%H%M%S'`
                export model_run_time=$((${job_et}-${job_bt}))
                eval "cat ${log_path}/${log_name}"

                # parser log
                _model_name="${model_name}_bs${batch_size}_${precision}_${run_mode}"
                cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
                        --speed_log_file '${speed_log_path}/${speed_log_name}' \
                        --model_name ${_model_name} \
                        --base_batch_size ${batch_size} \
                        --run_mode ${run_mode} \
                        --fp_item ${precision} \
                        --keyword ips: \
                        --skip_steps 4 \
                        --device_num ${device_num} \
                        --speed_unit images/s \
                        --convergence_key loss: "
                echo $cmd
                eval $cmd
                last_status=${PIPESTATUS[0]}
                status_check $last_status "${cmd}" "${status_log}" "${model_name}"
            else
                IFS=";"
                unset_env=`unset CUDA_VISIBLE_DEVICES`
                log_path="$SAVE_LOG/train_log"
                speed_log_path="$SAVE_LOG/index"
                mkdir -p $log_path
                mkdir -p $speed_log_path
                log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log"
                speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed"
                func_sed_params "$FILENAME" "${line_gpuid}" "$gpu_id"  # sed used gpu_id
                func_sed_params "$FILENAME" "${line_profile}" "null"  # sed --profile_option as null
                cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
                echo $cmd
                job_bt=`date '+%Y%m%d%H%M%S'`
                eval $cmd
                job_et=`date '+%Y%m%d%H%M%S'`
                export model_run_time=$((${job_et}-${job_bt}))
                eval "cat ${log_path}/${log_name}"
                # parser log
                _model_name="${model_name}_bs${batch_size}_${precision}_${run_mode}"

                cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
                        --speed_log_file '${speed_log_path}/${speed_log_name}' \
                        --model_name ${_model_name} \
                        --base_batch_size ${batch_size} \
                        --run_mode ${run_mode} \
                        --fp_item ${precision} \
                        --keyword ips: \
                        --skip_steps 4 \
                        --device_num ${device_num} \
                        --speed_unit images/s \
                        --convergence_key loss: "
                echo $cmd
                eval $cmd
                last_status=${PIPESTATUS[0]}
                status_check $last_status "${cmd}" "${status_log}" "${model_name}"
            fi
        done
    done
done