analysis.py 14.6 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import argparse
import json
import os
import re
import traceback

from numpy import mean, var


def parse_args():
    parser = argparse.ArgumentParser(description=__doc__)
    parser.add_argument(
        "--filename", type=str, help="The name of log which need to analysis.")
    parser.add_argument(
        "--speed_log_file", type=str, help="json file")
    parser.add_argument(
        "--log_with_profiler", type=str, help="The path of train log with profiler")
    parser.add_argument(
        "--profiler_path", type=str, help="The path of profiler timeline log.")
    parser.add_argument(
        "--keyword", type=str, help="Keyword to specify analysis data")
    parser.add_argument(
        "--separator", type=str, default=None, help="Separator of different field in log")
    parser.add_argument(
        '--position', type=int, default=None, help='The position of data field')
    parser.add_argument(
        '--range', type=str, default="", help='The range of data field to intercept')
    parser.add_argument(
        '--skip_steps', type=int, default=0, help='The number of steps to be skipped')
    parser.add_argument(
        '--model_mode', type=int, default=-1, help='Analysis mode, default value is -1')

    parser.add_argument(
        '--model_name', type=str, default="model_name", help='training model_name, transformer_base')
    parser.add_argument(
        '--base_batch_size', type=int, help='base_batch size on gpu')
    parser.add_argument(
        '--fp_item', type=str, help='fp_item:fp16|fp32')
    parser.add_argument(
        '--run_mode', type=str, default="DP", help='DP|MP|PP')
    parser.add_argument(
        '--convergence_key', type=str, default="", help="Keyword to specify loss data")
    parser.add_argument(
        '--speed_unit', type=str, default="images/s", help='IPS unit')
    parser.add_argument(
        '--device_num', type=str, default='N1C1', help='device_num:N1C1|N1C8|N4C32')
    args = parser.parse_args()
    args.separator = None if args.separator == "None" else args.separator
    return args


def _is_number(num):
    pattern = re.compile(r'^[-+]?[-0-9]\d*\.\d*|[-+]?\.?[0-9]\d*$')
    result = pattern.match(num)
    if result:
        return True
    else:
        return False


class TimeAnalyzer(object):
    def __init__(self, filename, keyword=None, separator=None, position=None, range="-1"):
        if filename is None:
            raise Exception("Please specify the filename!")

        if keyword is None:
            raise Exception("Please specify the keyword!")

        self.filename = filename
        self.keyword = keyword
        self.separator = separator
        self.position = position
        self.range = range
        self.records = None
        self._distil()

    def _distil(self):
        self.records = []
        with open(self.filename, "r") as f_object:
            lines = f_object.readlines()
            for line in lines:
                if self.keyword not in line:
                    continue
                try:
                    result = None

                    # Distil the string from a line.
                    line = line.strip()
                    line_words = line.split(self.separator) if self.separator else line.split()
                    if args.position:
                        result = line_words[self.position]
                    else:
                        # Distil the string following the keyword.
                        for i in range(len(line_words) - 1):
                            if line_words[i] == self.keyword:
                                result = line_words[i + 1]
                                break

                    # Distil the result from the picked string.
                    if not self.range:
                        result = result[0:]
                    elif _is_number(self.range):
                        result = result[0: int(self.range)]
                    else:
                        result = result[int(self.range.split(":")[0]): int(self.range.split(":")[1])]
                    self.records.append(float(result))
                except Exception as exc:
                    print("line is: {}; separator={}; position={}".format(line, self.separator, self.position))

        print("Extract {} records: separator={}; position={}".format(len(self.records), self.separator, self.position))

    def _get_fps(self, mode, base_batch_size, gpu_num, avg_of_records, unit=None):
        if mode == -1:
            assert unit, "Please set the unit when mode is -1."
            fps = gpu_num * avg_of_records
        elif mode == 0:
            # s/step -> samples/s
            fps = (base_batch_size * gpu_num) / avg_of_records
            unit = "samples/s"
        elif mode == 1:
            # steps/s -> steps/s
            fps = avg_of_records
            unit = "steps/s"
        elif mode == 2:
            # s/step -> steps/s
            fps = 1 / avg_of_records
            unit = "steps/s"
        elif mode == 3:
            # steps/s -> samples/s
            fps = base_batch_size * gpu_num * avg_of_records
            unit = "samples/s"
        elif mode == 4:
            # s/epoch -> s/epoch
            fps = avg_of_records
            unit = "s/epoch"
        else:
            ValueError("Unsupported analysis mode.")

        return fps, unit

    def analysis(self, base_batch_size, gpu_num=1, skip_steps=0, mode=-1, unit=None):
        if base_batch_size <= 0:
            print("base_batch_size should larger than 0.")
            return 0, ''
        
        if len(self.records) <= (skip_steps + 10):  # to address the condition which item of log equals to skip_steps
            print("ERROR!!! too few logs printed")
            return 0, ''

        sum_of_records = 0
        sum_of_records_skipped = 0
        skip_min = self.records[skip_steps]
        skip_max = self.records[skip_steps]

        count = len(self.records)
        # 1 计算skip 后平均值
        for i in range(count):
            sum_of_records += self.records[i]
            if i >= skip_steps:
                sum_of_records_skipped += self.records[i]
                if self.records[i] < skip_min:
                    skip_min = self.records[i]
                if self.records[i] > skip_max:
                    skip_max = self.records[i]
        avg_of_records = sum_of_records / float(count)
        avg_of_records_skipped = sum_of_records_skipped / float(count - skip_steps)
        # 2 skip后去掉去除前max(5%,5)和后max(5%,5)个数据再计算平均值
        sorted_records = sorted(self.records[skip_steps:])
        skip_step2 = max(int(len(sorted_records) * 0.05), 5)
        try:
            del sorted_records[:skip_step2]
            del sorted_records[-skip_step2:]
            avg_of_sorted_records = mean(sorted_records)
            var_of_sorted_records = var(sorted_records)
            skip_min = min(sorted_records)
            skip_max = max(sorted_records)
        except Exception:
            print("no records")
            return 0, ''

        fps, fps_unit = self._get_fps(mode, base_batch_size, gpu_num, avg_of_records, unit)
        # fps_skipped, _ = self._get_fps(mode, base_batch_size, gpu_num, avg_of_records_skipped, unit)
        Fips, _ = self._get_fps(mode, base_batch_size, gpu_num, avg_of_sorted_records, unit)

        if mode == -1:
            print("average ips of %d steps, skip 0 step:" % count)
            print("\tAvg: %.3f %s" % (avg_of_records, fps_unit))
            print("\tFPS: %.3f %s" % (fps, fps_unit))
            if skip_steps > 0:
                print("average ips of %d steps, skip %d steps, valid steps %d :" % (count, \
                                                                                    skip_steps,
                                                                                    count - skip_steps - 2 * skip_step2))
                print("\tvar: %.3f " % (var_of_sorted_records))
                print("\tAvg: %.3f %s" % (avg_of_sorted_records, fps_unit))
                print("\tMin: %.3f %s" % (skip_min, fps_unit))
                print("\tMax: %.3f %s" % (skip_max, fps_unit))
                print("\tdiff_min_max: %.3f %s" % ((skip_min - skip_max) * 100 / skip_max, "%"))
                print("\tFPS: %.3f %s" % (Fips, fps_unit))
        elif mode == 1 or mode == 3:
            print("average latency of %d steps, skip 0 step:" % count)
            print("\tAvg: %.3f steps/s" % avg_of_records)
            print("\tFPS: %.3f %s" % (fps, fps_unit))
            if skip_steps > 0:
                print("average latency of %d steps, skip %d steps:" % (count, skip_steps))
                print("\tAvg: %.3f steps/s" % avg_of_records_skipped)
                print("\tMin: %.3f steps/s" % skip_min)
                print("\tMax: %.3f steps/s" % skip_max)
                print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))
        elif mode == 0 or mode == 2:
            print("average latency of %d steps, skip 0 step:" % count)
            print("\tAvg: %.3f s/step" % avg_of_records)
            print("\tFPS: %.3f %s" % (fps, fps_unit))
            if skip_steps > 0:
                print("average latency of %d steps, skip %d steps:" % (count, skip_steps))
                print("\tAvg: %.3f s/step" % avg_of_records_skipped)
                print("\tMin: %.3f s/step" % skip_min)
                print("\tMax: %.3f s/step" % skip_max)
                print("\tFPS: %.3f %s" % (fps_skipped, fps_unit))

        return round(Fips, 3), fps_unit


class ExceptionTest(Exception):
    pass


class LossAnalyzer(object):
    def __init__(self, filename, convergence_key=None, separator=None):
        if filename is None:
            raise Exception("Please specify the filename!")
        if convergence_key is None:
            raise Exception("Please specify the keyword of loss!")
        self.filename = filename
        self.convergence_key = convergence_key
        self.separator = separator

    def get_loss(self):
        with open(self.filename, "r") as f_object:
            lines = f_object.readlines()
            lines.reverse()
            result_loss = 0
            for line in lines:
                if self.convergence_key not in line:
                    continue
                try:
                    result_loss = 0
                    line = line.strip()
                    line_words = line.split(self.separator) if self.separator else line.split()
                    for i in range(len(line_words) - 1):
                        if line_words[i] == self.convergence_key:
                            result_loss = line_words[i + 1]
                            result_loss = result_loss.replace(',', '')
                            raise ExceptionTest()
                except ExceptionTest:
                    break
        print("\tLoss: {}".format(result_loss))
        return result_loss

    def get_loss_avg(self):
        # for gpt3 CE loss
        with open(self.filename, "r") as f_object:
            lines = f_object.readlines()
            result_loss_list = []
            for line in lines:
                if self.convergence_key in line and "tokens/s" in line:
                    result_loss = 0
                    line = line.strip()
                    line_words = line.split(self.separator) if self.separator else line.split()
                    for i in range(len(line_words) - 1):
                        if line_words[i] == self.convergence_key:
                            result_loss = line_words[i + 1]
                            result_loss = result_loss.replace(',', '')
                            try:
                                result_loss_list.append(float(result_loss))
                            except:
                                result_loss_list.append(-1)
        result_loss_avg = sum(result_loss_list[-100:]) / 100
        print("\tLoss: {}".format(result_loss_avg))
        return result_loss_avg


if __name__ == "__main__":
    args = parse_args()
    run_info = dict()
    run_info["model_branch"] = os.getenv("model_branch")
    run_info["model_commit"] = os.getenv("model_commit")
    run_info["model_name"] = args.model_name
    run_info["batch_size"] = args.base_batch_size
    run_info["fp_item"] = args.fp_item
    if re.match(r'DP.-MP.-PP.', args.run_mode) or 'DP_MoE_C' in args.run_mode or 'Sharding_MoE_C' in args.run_mode \
            or re.match(r'DP._MP.', args.run_mode):
        run_info["run_mode"] = 'Collective'
    else:
        run_info["run_mode"] = args.run_mode
    run_info["convergence_value"] = 0
    run_info["convergence_key"] = args.convergence_key
    run_info["ips"] = 0
    run_info["speed_unit"] = args.speed_unit
    run_info["device_num"] = args.device_num
    run_info["model_run_time"] = os.getenv('model_run_time')
    run_info["frame_commit"] = os.getenv('frame_commit')
    run_info["frame_version"] = os.getenv('frame_version')
    device_num = args.device_num
    print("---device_num:-", device_num)
    index_c = device_num.index('C')
    print("---index_c:-", index_c)
    gpu_num = int(device_num[index_c + 1:len(device_num)])
    print("-----gpu_num:", gpu_num)
    if "pwgan" in args.model_name:
        print("------analysis ", args.model_name)
        args.keyword = "avg_ips:"

    try:
        analyzer = TimeAnalyzer(args.filename, args.keyword, args.separator, args.position, args.range)
        run_info["ips"], run_info["speed_unit"] = analyzer.analysis(
            base_batch_size=args.base_batch_size,
            gpu_num=gpu_num,
            skip_steps=args.skip_steps,
            mode=args.model_mode,
            unit=args.speed_unit)
        if "CE_gpt3" in run_info["model_name"]:
            loss_analyzer = LossAnalyzer(args.filename, args.convergence_key)
            run_info["convergence_value"] = loss_analyzer.get_loss_avg()
        elif args.convergence_key != "":
            loss_analyzer = LossAnalyzer(args.filename, args.convergence_key)
            run_info["convergence_value"] = loss_analyzer.get_loss()
    except Exception:
        traceback.print_exc()
    print("{}".format(json.dumps(run_info)))  # it's required, for the log file path  insert to the database
    with open(args.speed_log_file, "w") as f:
        f.write(json.dumps(run_info))