fuse_utils.py 6.16 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import paddle
import paddle.nn as nn

__all__ = ['fuse_conv_bn']


def fuse_conv_bn(model):
    is_train = False
    if model.training:
        model.eval()
        is_train = True
    fuse_list = []
    tmp_pair = [None, None]
    for name, layer in model.named_sublayers():
        if isinstance(layer, nn.Conv2D):
            tmp_pair[0] = name
        if isinstance(layer, nn.BatchNorm2D):
            tmp_pair[1] = name

        if tmp_pair[0] and tmp_pair[1] and len(tmp_pair) == 2:
            fuse_list.append(tmp_pair)
            tmp_pair = [None, None]
    model = fuse_layers(model, fuse_list)
    if is_train:
        model.train()
    return model


def find_parent_layer_and_sub_name(model, name):
    """
    Given the model and the name of a layer, find the parent layer and
    the sub_name of the layer.
    For example, if name is 'block_1/convbn_1/conv_1', the parent layer is
    'block_1/convbn_1' and the sub_name is `conv_1`.
    Args:
        model(paddle.nn.Layer): the model to be quantized.
        name(string): the name of a layer

    Returns:
        parent_layer, subname
    """
    assert isinstance(model, nn.Layer), \
            "The model must be the instance of paddle.nn.Layer."
    assert len(name) > 0, "The input (name) should not be empty."

    last_idx = 0
    idx = 0
    parent_layer = model
    while idx < len(name):
        if name[idx] == '.':
            sub_name = name[last_idx:idx]
            if hasattr(parent_layer, sub_name):
                parent_layer = getattr(parent_layer, sub_name)
                last_idx = idx + 1
        idx += 1
    sub_name = name[last_idx:idx]
    return parent_layer, sub_name


class Identity(nn.Layer):
    '''a layer to replace bn or relu layers'''

    def __init__(self, *args, **kwargs):
        super(Identity, self).__init__()

    def forward(self, input):
        return input


def fuse_layers(model, layers_to_fuse, inplace=False):
    '''
       fuse layers in layers_to_fuse

       Args:
           model(nn.Layer): The model to be fused.
           layers_to_fuse(list): The layers' names to be fused. For
               example,"fuse_list = [["conv1", "bn1"], ["conv2", "bn2"]]".
               A TypeError would be raised if "fuse" was set as
               True but "fuse_list" was None.
                                 Default: None.
           inplace(bool): Whether apply fusing to the input model.
                          Default: False.

       Return
           fused_model(paddle.nn.Layer): The fused model.
    '''
    if not inplace:
        model = copy.deepcopy(model)
    for layers_list in layers_to_fuse:
        layer_list = []
        for layer_name in layers_list:
            parent_layer, sub_name = find_parent_layer_and_sub_name(model,
                                                                    layer_name)
            layer_list.append(getattr(parent_layer, sub_name))
        new_layers = _fuse_func(layer_list)
        for i, item in enumerate(layers_list):
            parent_layer, sub_name = find_parent_layer_and_sub_name(model, item)
            setattr(parent_layer, sub_name, new_layers[i])
    return model


def _fuse_func(layer_list):
    '''choose the fuser method and fuse layers'''
    types = tuple(type(m) for m in layer_list)
    fusion_method = types_to_fusion_method.get(types, None)
    new_layers = [None] * len(layer_list)
    fused_layer = fusion_method(*layer_list)
    for handle_id, pre_hook_fn in layer_list[0]._forward_pre_hooks.items():
        fused_layer.register_forward_pre_hook(pre_hook_fn)
        del layer_list[0]._forward_pre_hooks[handle_id]
    for handle_id, hook_fn in layer_list[-1]._forward_post_hooks.items():
        fused_layer.register_forward_post_hook(hook_fn)
        del layer_list[-1]._forward_post_hooks[handle_id]
    new_layers[0] = fused_layer
    for i in range(1, len(layer_list)):
        identity = Identity()
        identity.training = layer_list[0].training
        new_layers[i] = identity
    return new_layers


def _fuse_conv_bn(conv, bn):
    '''fuse conv and bn for train or eval'''
    assert(conv.training == bn.training),\
        "Conv and BN both must be in the same mode (train or eval)."
    if conv.training:
        assert bn._num_features == conv._out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
        raise NotImplementedError
    else:
        return _fuse_conv_bn_eval(conv, bn)


def _fuse_conv_bn_eval(conv, bn):
    '''fuse conv and bn for eval'''
    assert (not (conv.training or bn.training)), "Fusion only for eval!"
    fused_conv = copy.deepcopy(conv)

    fused_weight, fused_bias = _fuse_conv_bn_weights(
        fused_conv.weight, fused_conv.bias, bn._mean, bn._variance, bn._epsilon,
        bn.weight, bn.bias)
    fused_conv.weight.set_value(fused_weight)
    if fused_conv.bias is None:
        fused_conv.bias = paddle.create_parameter(
            shape=[fused_conv._out_channels], is_bias=True, dtype=bn.bias.dtype)
    fused_conv.bias.set_value(fused_bias)
    return fused_conv


def _fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b):
    '''fuse weights and bias of conv and bn'''
    if conv_b is None:
        conv_b = paddle.zeros_like(bn_rm)
    if bn_w is None:
        bn_w = paddle.ones_like(bn_rm)
    if bn_b is None:
        bn_b = paddle.zeros_like(bn_rm)
    bn_var_rsqrt = paddle.rsqrt(bn_rv + bn_eps)
    conv_w = conv_w * \
        (bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1))
    conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b
    return conv_w, conv_b


types_to_fusion_method = {(nn.Conv2D, nn.BatchNorm2D): _fuse_conv_bn, }