download.py 19.4 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import os.path as osp
import sys
import yaml
import time
import shutil
import requests
import tqdm
import hashlib
import base64
import binascii
import tarfile
import zipfile
import errno

from paddle.utils.download import _get_unique_endpoints
from ppdet.core.workspace import BASE_KEY
from .logger import setup_logger
from .voc_utils import create_list

logger = setup_logger(__name__)

__all__ = [
    'get_weights_path', 'get_dataset_path', 'get_config_path',
    'download_dataset', 'create_voc_list'
]

WEIGHTS_HOME = osp.expanduser("~/.cache/paddle/weights")
DATASET_HOME = osp.expanduser("~/.cache/paddle/dataset")
CONFIGS_HOME = osp.expanduser("~/.cache/paddle/configs")

# dict of {dataset_name: (download_info, sub_dirs)}
# download info: [(url, md5sum)]
DATASETS = {
    'coco': ([
        (
            'http://images.cocodataset.org/zips/train2017.zip',
            'cced6f7f71b7629ddf16f17bbcfab6b2', ),
        (
            'http://images.cocodataset.org/zips/val2017.zip',
            '442b8da7639aecaf257c1dceb8ba8c80', ),
        (
            'http://images.cocodataset.org/annotations/annotations_trainval2017.zip',
            'f4bbac642086de4f52a3fdda2de5fa2c', ),
    ], ["annotations", "train2017", "val2017"]),
    'voc': ([
        (
            'http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar',
            '6cd6e144f989b92b3379bac3b3de84fd', ),
        (
            'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
            'c52e279531787c972589f7e41ab4ae64', ),
        (
            'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar',
            'b6e924de25625d8de591ea690078ad9f', ),
        (
            'https://paddledet.bj.bcebos.com/data/label_list.txt',
            '5ae5d62183cfb6f6d3ac109359d06a1b', ),
    ], ["VOCdevkit/VOC2012", "VOCdevkit/VOC2007"]),
    'wider_face': ([
        (
            'https://dataset.bj.bcebos.com/wider_face/WIDER_train.zip',
            '3fedf70df600953d25982bcd13d91ba2', ),
        (
            'https://dataset.bj.bcebos.com/wider_face/WIDER_val.zip',
            'dfa7d7e790efa35df3788964cf0bbaea', ),
        (
            'https://dataset.bj.bcebos.com/wider_face/wider_face_split.zip',
            'a4a898d6193db4b9ef3260a68bad0dc7', ),
    ], ["WIDER_train", "WIDER_val", "wider_face_split"]),
    'fruit': ([(
        'https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit.tar',
        'baa8806617a54ccf3685fa7153388ae6', ), ],
              ['Annotations', 'JPEGImages']),
    'roadsign_voc': ([(
        'https://paddlemodels.bj.bcebos.com/object_detection/roadsign_voc.tar',
        '8d629c0f880dd8b48de9aeff44bf1f3e', ), ], ['annotations', 'images']),
    'roadsign_coco': ([(
        'https://paddlemodels.bj.bcebos.com/object_detection/roadsign_coco.tar',
        '49ce5a9b5ad0d6266163cd01de4b018e', ), ], ['annotations', 'images']),
    'spine_coco': ([(
        'https://paddledet.bj.bcebos.com/data/spine.tar',
        '8a3a353c2c54a2284ad7d2780b65f6a6', ), ], ['annotations', 'images']),
    'coco_ce': ([(
        'https://paddledet.bj.bcebos.com/data/coco_ce.tar',
        'eadd1b79bc2f069f2744b1dd4e0c0329', ), ], [])
}

DOWNLOAD_DATASETS_LIST = DATASETS.keys()

DOWNLOAD_RETRY_LIMIT = 3

PPDET_WEIGHTS_DOWNLOAD_URL_PREFIX = 'https://paddledet.bj.bcebos.com/'


# When running unit tests, there could be multiple processes that
# trying to create DATA_HOME directory simultaneously, so we cannot
# use a if condition to check for the existence of the directory;
# instead, we use the filesystem as the synchronization mechanism by
# catching returned errors.
def must_mkdirs(path):
    try:
        os.makedirs(path)
    except OSError as exc:
        if exc.errno != errno.EEXIST:
            raise
        pass


def parse_url(url):
    url = url.replace("ppdet://", PPDET_WEIGHTS_DOWNLOAD_URL_PREFIX)
    return url


def get_weights_path(url):
    """Get weights path from WEIGHTS_HOME, if not exists,
    download it from url.
    """
    url = parse_url(url)
    path, _ = get_path(url, WEIGHTS_HOME)
    return path


def get_config_path(url):
    """Get weights path from CONFIGS_HOME, if not exists,
    download it from url.
    """
    url = parse_url(url)
    path = map_path(url, CONFIGS_HOME, path_depth=2)
    if os.path.isfile(path):
        return path

    # config file not found, try download
    # 1. clear configs directory
    if osp.isdir(CONFIGS_HOME):
        shutil.rmtree(CONFIGS_HOME)

    # 2. get url
    try:
        from ppdet import __version__ as version
    except ImportError:
        version = None

    cfg_url = "ppdet://configs/{}/configs.tar".format(version) \
                if version else "ppdet://configs/configs.tar"
    cfg_url = parse_url(cfg_url)

    # 3. download and decompress
    cfg_fullname = _download_dist(cfg_url, osp.dirname(CONFIGS_HOME))
    _decompress_dist(cfg_fullname)

    # 4. check config file existing
    if os.path.isfile(path):
        return path
    else:
        logger.error("Get config {} failed after download, please contact us on " \
            "https://github.com/PaddlePaddle/PaddleDetection/issues".format(path))
        sys.exit(1)


def get_dataset_path(path, annotation, image_dir):
    """
    If path exists, return path.
    Otherwise, get dataset path from DATASET_HOME, if not exists,
    download it.
    """
    if _dataset_exists(path, annotation, image_dir):
        return path

    data_name = os.path.split(path.strip().lower())[-1]
    if data_name not in DOWNLOAD_DATASETS_LIST:
        raise ValueError(
            "Dataset {} is not valid for reason above, please check again.".
            format(osp.realpath(path)))
    else:
        logger.warning(
            "Dataset {} is not valid for reason above, try searching {} or "
            "downloading dataset...".format(osp.realpath(path), DATASET_HOME))

    for name, dataset in DATASETS.items():
        if data_name == name:
            logger.debug("Parse dataset_dir {} as dataset "
                         "{}".format(path, name))
            data_dir = osp.join(DATASET_HOME, name)

            if name == "spine_coco":
                if _dataset_exists(data_dir, annotation, image_dir):
                    return data_dir

            # For voc, only check dir VOCdevkit/VOC2012, VOCdevkit/VOC2007
            if name in ['voc', 'fruit', 'roadsign_voc']:
                exists = True
                for sub_dir in dataset[1]:
                    check_dir = osp.join(data_dir, sub_dir)
                    if osp.exists(check_dir):
                        logger.info("Found {}".format(check_dir))
                    else:
                        exists = False
                if exists:
                    return data_dir

            # voc exist is checked above, voc is not exist here
            check_exist = name != 'voc' and name != 'fruit' and name != 'roadsign_voc'
            for url, md5sum in dataset[0]:
                get_path(url, data_dir, md5sum, check_exist)

            # voc should create list after download
            if name == 'voc':
                create_voc_list(data_dir)
            return data_dir

    raise ValueError("Dataset automaticly downloading Error.")


def create_voc_list(data_dir, devkit_subdir='VOCdevkit'):
    logger.debug("Create voc file list...")
    devkit_dir = osp.join(data_dir, devkit_subdir)
    years = ['2007', '2012']

    # NOTE: since using auto download VOC
    # dataset, VOC default label list should be used, 
    # do not generate label_list.txt here. For default
    # label, see ../data/source/voc.py
    create_list(devkit_dir, years, data_dir)
    logger.debug("Create voc file list finished")


def map_path(url, root_dir, path_depth=1):
    # parse path after download to decompress under root_dir
    assert path_depth > 0, "path_depth should be a positive integer"
    dirname = url
    for _ in range(path_depth):
        dirname = osp.dirname(dirname)
    fpath = osp.relpath(url, dirname)

    zip_formats = ['.zip', '.tar', '.gz']
    for zip_format in zip_formats:
        fpath = fpath.replace(zip_format, '')
    return osp.join(root_dir, fpath)


def get_path(url, root_dir, md5sum=None, check_exist=True):
    """ Download from given url to root_dir.
    if file or directory specified by url is exists under
    root_dir, return the path directly, otherwise download
    from url and decompress it, return the path.

    url (str): download url
    root_dir (str): root dir for downloading, it should be
                    WEIGHTS_HOME or DATASET_HOME
    md5sum (str): md5 sum of download package
    """
    # parse path after download to decompress under root_dir
    fullpath = map_path(url, root_dir)

    # For same zip file, decompressed directory name different
    # from zip file name, rename by following map
    decompress_name_map = {
        "VOCtrainval_11-May-2012": "VOCdevkit/VOC2012",
        "VOCtrainval_06-Nov-2007": "VOCdevkit/VOC2007",
        "VOCtest_06-Nov-2007": "VOCdevkit/VOC2007",
        "annotations_trainval": "annotations"
    }
    for k, v in decompress_name_map.items():
        if fullpath.find(k) >= 0:
            fullpath = osp.join(osp.split(fullpath)[0], v)

    if osp.exists(fullpath) and check_exist:
        if not osp.isfile(fullpath) or \
                _check_exist_file_md5(fullpath, md5sum, url):
            logger.debug("Found {}".format(fullpath))
            return fullpath, True
        else:
            os.remove(fullpath)

    fullname = _download_dist(url, root_dir, md5sum)

    # new weights format which postfix is 'pdparams' not
    # need to decompress
    if osp.splitext(fullname)[-1] not in ['.pdparams', '.yml']:
        _decompress_dist(fullname)

    return fullpath, False


def download_dataset(path, dataset=None):
    if dataset not in DATASETS.keys():
        logger.error("Unknown dataset {}, it should be "
                     "{}".format(dataset, DATASETS.keys()))
        return
    dataset_info = DATASETS[dataset][0]
    for info in dataset_info:
        get_path(info[0], path, info[1], False)
    logger.debug("Download dataset {} finished.".format(dataset))


def _dataset_exists(path, annotation, image_dir):
    """
    Check if user define dataset exists
    """
    if not osp.exists(path):
        logger.warning("Config dataset_dir {} is not exits, "
                       "dataset config is not valid".format(path))
        return False

    if annotation:
        annotation_path = osp.join(path, annotation)
        if not osp.isfile(annotation_path):
            logger.warning("Config annotation {} is not a "
                           "file, dataset config is not "
                           "valid".format(annotation_path))
            return False
    if image_dir:
        image_path = osp.join(path, image_dir)
        if not osp.isdir(image_path):
            logger.warning("Config image_dir {} is not a "
                           "directory, dataset config is not "
                           "valid".format(image_path))
            return False
    return True


def _download(url, path, md5sum=None):
    """
    Download from url, save to path.

    url (str): download url
    path (str): download to given path
    """
    must_mkdirs(path)

    fname = osp.split(url)[-1]
    fullname = osp.join(path, fname)
    retry_cnt = 0

    while not (osp.exists(fullname) and _check_exist_file_md5(fullname, md5sum,
                                                              url)):
        if retry_cnt < DOWNLOAD_RETRY_LIMIT:
            retry_cnt += 1
        else:
            raise RuntimeError("Download from {} failed. "
                               "Retry limit reached".format(url))

        logger.info("Downloading {} from {}".format(fname, url))

        # NOTE: windows path join may incur \, which is invalid in url
        if sys.platform == "win32":
            url = url.replace('\\', '/')

        req = requests.get(url, stream=True)
        if req.status_code != 200:
            raise RuntimeError("Downloading from {} failed with code "
                               "{}!".format(url, req.status_code))

        # For protecting download interupted, download to
        # tmp_fullname firstly, move tmp_fullname to fullname
        # after download finished
        tmp_fullname = fullname + "_tmp"
        total_size = req.headers.get('content-length')
        with open(tmp_fullname, 'wb') as f:
            if total_size:
                for chunk in tqdm.tqdm(
                        req.iter_content(chunk_size=1024),
                        total=(int(total_size) + 1023) // 1024,
                        unit='KB'):
                    f.write(chunk)
            else:
                for chunk in req.iter_content(chunk_size=1024):
                    if chunk:
                        f.write(chunk)
        shutil.move(tmp_fullname, fullname)
    return fullname


def _download_dist(url, path, md5sum=None):
    env = os.environ
    if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
        # Mainly used to solve the problem of downloading data from
        # different machines in the case of multiple machines.
        # Different nodes will download data, and the same node
        # will only download data once.
        # Reference https://github.com/PaddlePaddle/PaddleClas/blob/develop/ppcls/utils/download.py#L108
        rank_id_curr_node = int(os.environ.get("PADDLE_RANK_IN_NODE", 0))
        num_trainers = int(env['PADDLE_TRAINERS_NUM'])
        if num_trainers <= 1:
            return _download(url, path, md5sum)
        else:
            fname = osp.split(url)[-1]
            fullname = osp.join(path, fname)
            lock_path = fullname + '.download.lock'

            must_mkdirs(path)

            if not osp.exists(fullname):
                with open(lock_path, 'w'):  # touch    
                    os.utime(lock_path, None)
                if rank_id_curr_node == 0:
                    _download(url, path, md5sum)
                    os.remove(lock_path)
                else:
                    while os.path.exists(lock_path):
                        time.sleep(0.5)
            return fullname
    else:
        return _download(url, path, md5sum)


def _check_exist_file_md5(filename, md5sum, url):
    # if md5sum is None, and file to check is weights file, 
    # read md5um from url and check, else check md5sum directly
    return _md5check_from_url(filename, url) if md5sum is None \
            and filename.endswith('pdparams') \
            else _md5check(filename, md5sum)


def _md5check_from_url(filename, url):
    # For weights in bcebos URLs, MD5 value is contained
    # in request header as 'content_md5'
    req = requests.get(url, stream=True)
    content_md5 = req.headers.get('content-md5')
    req.close()
    if not content_md5 or _md5check(
            filename,
            binascii.hexlify(base64.b64decode(content_md5.strip('"'))).decode(
            )):
        return True
    else:
        return False


def _md5check(fullname, md5sum=None):
    if md5sum is None:
        return True

    logger.debug("File {} md5 checking...".format(fullname))
    md5 = hashlib.md5()
    with open(fullname, 'rb') as f:
        for chunk in iter(lambda: f.read(4096), b""):
            md5.update(chunk)
    calc_md5sum = md5.hexdigest()

    if calc_md5sum != md5sum:
        logger.warning("File {} md5 check failed, {}(calc) != "
                       "{}(base)".format(fullname, calc_md5sum, md5sum))
        return False
    return True


def _decompress(fname):
    """
    Decompress for zip and tar file
    """
    logger.info("Decompressing {}...".format(fname))

    # For protecting decompressing interupted,
    # decompress to fpath_tmp directory firstly, if decompress
    # successed, move decompress files to fpath and delete
    # fpath_tmp and remove download compress file.
    fpath = osp.split(fname)[0]
    fpath_tmp = osp.join(fpath, 'tmp')
    if osp.isdir(fpath_tmp):
        shutil.rmtree(fpath_tmp)
        os.makedirs(fpath_tmp)

    if fname.find('tar') >= 0:
        with tarfile.open(fname) as tf:
            tf.extractall(path=fpath_tmp)
    elif fname.find('zip') >= 0:
        with zipfile.ZipFile(fname) as zf:
            zf.extractall(path=fpath_tmp)
    elif fname.find('.txt') >= 0:
        return
    else:
        raise TypeError("Unsupport compress file type {}".format(fname))

    for f in os.listdir(fpath_tmp):
        src_dir = osp.join(fpath_tmp, f)
        dst_dir = osp.join(fpath, f)
        _move_and_merge_tree(src_dir, dst_dir)

    shutil.rmtree(fpath_tmp)
    os.remove(fname)


def _decompress_dist(fname):
    env = os.environ
    if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        num_trainers = int(env['PADDLE_TRAINERS_NUM'])
        if num_trainers <= 1:
            _decompress(fname)
        else:
            lock_path = fname + '.decompress.lock'
            from paddle.distributed import ParallelEnv
            unique_endpoints = _get_unique_endpoints(ParallelEnv()
                                                     .trainer_endpoints[:])
            # NOTE(dkp): _decompress_dist always performed after
            # _download_dist, in _download_dist sub-trainers is waiting
            # for download lock file release with sleeping, if decompress
            # prograss is very fast and finished with in the sleeping gap
            # time, e.g in tiny dataset such as coco_ce, spine_coco, main
            # trainer may finish decompress and release lock file, so we
            # only craete lock file in main trainer and all sub-trainer
            # wait 1s for main trainer to create lock file, for 1s is
            # twice as sleeping gap, this waiting time can keep all
            # trainer pipeline in order
            # **change this if you have more elegent methods**
            if ParallelEnv().current_endpoint in unique_endpoints:
                with open(lock_path, 'w'):  # touch    
                    os.utime(lock_path, None)
                _decompress(fname)
                os.remove(lock_path)
            else:
                time.sleep(1)
                while os.path.exists(lock_path):
                    time.sleep(0.5)
    else:
        _decompress(fname)


def _move_and_merge_tree(src, dst):
    """
    Move src directory to dst, if dst is already exists,
    merge src to dst
    """
    if not osp.exists(dst):
        shutil.move(src, dst)
    elif osp.isfile(src):
        shutil.move(src, dst)
    else:
        for fp in os.listdir(src):
            src_fp = osp.join(src, fp)
            dst_fp = osp.join(dst, fp)
            if osp.isdir(src_fp):
                if osp.isdir(dst_fp):
                    _move_and_merge_tree(src_fp, dst_fp)
                else:
                    shutil.move(src_fp, dst_fp)
            elif osp.isfile(src_fp) and \
                    not osp.isfile(dst_fp):
                shutil.move(src_fp, dst_fp)