prune.py 5.72 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
from paddle.utils import try_import

from ppdet.core.workspace import register, serializable
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)


def print_prune_params(model):
    model_dict = model.state_dict()
    for key in model_dict.keys():
        weight_name = model_dict[key].name
        logger.info('Parameter name: {}, shape: {}'.format(
            weight_name, model_dict[key].shape))


@register
@serializable
class Pruner(object):
    def __init__(self,
                 criterion,
                 pruned_params,
                 pruned_ratios,
                 print_params=False):
        super(Pruner, self).__init__()
        assert criterion in ['l1_norm', 'fpgm'], \
            "unsupported prune criterion: {}".format(criterion)
        self.criterion = criterion
        self.pruned_params = pruned_params
        self.pruned_ratios = pruned_ratios
        self.print_params = print_params

    def __call__(self, model):
        # FIXME: adapt to network graph when Training and inference are
        # inconsistent, now only supports prune inference network graph.
        model.eval()
        paddleslim = try_import('paddleslim')
        from paddleslim.analysis import dygraph_flops as flops
        input_spec = [{
            "image": paddle.ones(
                shape=[1, 3, 640, 640], dtype='float32'),
            "im_shape": paddle.full(
                [1, 2], 640, dtype='float32'),
            "scale_factor": paddle.ones(
                shape=[1, 2], dtype='float32')
        }]
        if self.print_params:
            print_prune_params(model)

        ori_flops = flops(model, input_spec) / (1000**3)
        logger.info("FLOPs before pruning: {}GFLOPs".format(ori_flops))
        if self.criterion == 'fpgm':
            pruner = paddleslim.dygraph.FPGMFilterPruner(model, input_spec)
        elif self.criterion == 'l1_norm':
            pruner = paddleslim.dygraph.L1NormFilterPruner(model, input_spec)

        logger.info("pruned params: {}".format(self.pruned_params))
        pruned_ratios = [float(n) for n in self.pruned_ratios]
        ratios = {}
        for i, param in enumerate(self.pruned_params):
            ratios[param] = pruned_ratios[i]
        pruner.prune_vars(ratios, [0])
        pruned_flops = flops(model, input_spec) / (1000**3)
        logger.info("FLOPs after pruning: {}GFLOPs; pruned ratio: {}".format(
            pruned_flops, (ori_flops - pruned_flops) / ori_flops))

        return model


@register
@serializable
class PrunerQAT(object):
    def __init__(self, criterion, pruned_params, pruned_ratios,
                 print_prune_params, quant_config, print_qat_model):
        super(PrunerQAT, self).__init__()
        assert criterion in ['l1_norm', 'fpgm'], \
            "unsupported prune criterion: {}".format(criterion)
        # Pruner hyperparameter
        self.criterion = criterion
        self.pruned_params = pruned_params
        self.pruned_ratios = pruned_ratios
        self.print_prune_params = print_prune_params
        # QAT hyperparameter
        self.quant_config = quant_config
        self.print_qat_model = print_qat_model

    def __call__(self, model):
        # FIXME: adapt to network graph when Training and inference are
        # inconsistent, now only supports prune inference network graph.
        model.eval()
        paddleslim = try_import('paddleslim')
        from paddleslim.analysis import dygraph_flops as flops
        input_spec = [{
            "image": paddle.ones(
                shape=[1, 3, 640, 640], dtype='float32'),
            "im_shape": paddle.full(
                [1, 2], 640, dtype='float32'),
            "scale_factor": paddle.ones(
                shape=[1, 2], dtype='float32')
        }]
        if self.print_prune_params:
            print_prune_params(model)

        ori_flops = flops(model, input_spec) / 1000
        logger.info("FLOPs before pruning: {}GFLOPs".format(ori_flops))
        if self.criterion == 'fpgm':
            pruner = paddleslim.dygraph.FPGMFilterPruner(model, input_spec)
        elif self.criterion == 'l1_norm':
            pruner = paddleslim.dygraph.L1NormFilterPruner(model, input_spec)

        logger.info("pruned params: {}".format(self.pruned_params))
        pruned_ratios = [float(n) for n in self.pruned_ratios]
        ratios = {}
        for i, param in enumerate(self.pruned_params):
            ratios[param] = pruned_ratios[i]
        pruner.prune_vars(ratios, [0])
        pruned_flops = flops(model, input_spec) / 1000
        logger.info("FLOPs after pruning: {}GFLOPs; pruned ratio: {}".format(
            pruned_flops, (ori_flops - pruned_flops) / ori_flops))

        self.quanter = paddleslim.dygraph.quant.QAT(config=self.quant_config)

        self.quanter.quantize(model)

        if self.print_qat_model:
            logger.info("Quantized model:")
            logger.info(model)

        return model

    def save_quantized_model(self, layer, path, input_spec=None, **config):
        self.quanter.save_quantized_model(
            model=layer, path=path, input_spec=input_spec, **config)