distill_model.py 14.5 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn

from ppdet.core.workspace import register, create, load_config
from ppdet.utils.checkpoint import load_pretrain_weight
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

__all__ = [
    'DistillModel',
    'FGDDistillModel',
    'CWDDistillModel',
    'LDDistillModel',
    'PPYOLOEDistillModel',
]


@register
class DistillModel(nn.Layer):
    """
    Build common distill model.
    Args:
        cfg: The student config.
        slim_cfg: The teacher and distill config.
    """

    def __init__(self, cfg, slim_cfg):
        super(DistillModel, self).__init__()
        self.arch = cfg.architecture

        self.stu_cfg = cfg
        self.student_model = create(self.stu_cfg.architecture)
        if 'pretrain_weights' in self.stu_cfg and self.stu_cfg.pretrain_weights:
            stu_pretrain = self.stu_cfg.pretrain_weights
        else:
            stu_pretrain = None

        slim_cfg = load_config(slim_cfg)
        self.tea_cfg = slim_cfg
        self.teacher_model = create(self.tea_cfg.architecture)
        if 'pretrain_weights' in self.tea_cfg and self.tea_cfg.pretrain_weights:
            tea_pretrain = self.tea_cfg.pretrain_weights
        else:
            tea_pretrain = None
        self.distill_cfg = slim_cfg

        # load pretrain weights
        self.is_inherit = False
        if stu_pretrain:
            if self.is_inherit and tea_pretrain:
                load_pretrain_weight(self.student_model, tea_pretrain)
                logger.debug(
                    "Inheriting! loading teacher weights to student model!")
            load_pretrain_weight(self.student_model, stu_pretrain)
            logger.info("Student model has loaded pretrain weights!")
        if tea_pretrain:
            load_pretrain_weight(self.teacher_model, tea_pretrain)
            logger.info("Teacher model has loaded pretrain weights!")

        self.teacher_model.eval()
        for param in self.teacher_model.parameters():
            param.trainable = False

        self.distill_loss = self.build_loss(self.distill_cfg)

    def build_loss(self, distill_cfg):
        if 'distill_loss' in distill_cfg and distill_cfg.distill_loss:
            return create(distill_cfg.distill_loss)
        else:
            return None

    def parameters(self):
        return self.student_model.parameters()

    def forward(self, inputs):
        if self.training:
            student_loss = self.student_model(inputs)
            with paddle.no_grad():
                teacher_loss = self.teacher_model(inputs)

            loss = self.distill_loss(self.teacher_model, self.student_model)
            student_loss['distill_loss'] = loss
            student_loss['teacher_loss'] = teacher_loss['loss']
            student_loss['loss'] += student_loss['distill_loss']
            return student_loss
        else:
            return self.student_model(inputs)


@register
class FGDDistillModel(DistillModel):
    """
    Build FGD distill model.
    Args:
        cfg: The student config.
        slim_cfg: The teacher and distill config.
    """

    def __init__(self, cfg, slim_cfg):
        super(FGDDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg)
        assert self.arch in ['RetinaNet', 'PicoDet'
                             ], 'Unsupported arch: {}'.format(self.arch)
        self.is_inherit = True

    def build_loss(self, distill_cfg):
        assert 'distill_loss_name' in distill_cfg and distill_cfg.distill_loss_name
        assert 'distill_loss' in distill_cfg and distill_cfg.distill_loss
        loss_func = dict()
        name_list = distill_cfg.distill_loss_name
        for name in name_list:
            loss_func[name] = create(distill_cfg.distill_loss)
        return loss_func

    def forward(self, inputs):
        if self.training:
            s_body_feats = self.student_model.backbone(inputs)
            s_neck_feats = self.student_model.neck(s_body_feats)
            with paddle.no_grad():
                t_body_feats = self.teacher_model.backbone(inputs)
                t_neck_feats = self.teacher_model.neck(t_body_feats)

            loss_dict = {}
            for idx, k in enumerate(self.distill_loss):
                loss_dict[k] = self.distill_loss[k](s_neck_feats[idx],
                                                    t_neck_feats[idx], inputs)
            if self.arch == "RetinaNet":
                loss = self.student_model.head(s_neck_feats, inputs)
            elif self.arch == "PicoDet":
                head_outs = self.student_model.head(
                    s_neck_feats, self.student_model.export_post_process)
                loss_gfl = self.student_model.head.get_loss(head_outs, inputs)
                total_loss = paddle.add_n(list(loss_gfl.values()))
                loss = {}
                loss.update(loss_gfl)
                loss.update({'loss': total_loss})
            else:
                raise ValueError(f"Unsupported model {self.arch}")

            for k in loss_dict:
                loss['loss'] += loss_dict[k]
                loss[k] = loss_dict[k]
            return loss
        else:
            body_feats = self.student_model.backbone(inputs)
            neck_feats = self.student_model.neck(body_feats)
            head_outs = self.student_model.head(neck_feats)
            if self.arch == "RetinaNet":
                bbox, bbox_num = self.student_model.head.post_process(
                    head_outs, inputs['im_shape'], inputs['scale_factor'])
                return {'bbox': bbox, 'bbox_num': bbox_num}
            elif self.arch == "PicoDet":
                head_outs = self.student_model.head(
                    neck_feats, self.student_model.export_post_process)
                scale_factor = inputs['scale_factor']
                bboxes, bbox_num = self.student_model.head.post_process(
                    head_outs,
                    scale_factor,
                    export_nms=self.student_model.export_nms)
                return {'bbox': bboxes, 'bbox_num': bbox_num}
            else:
                raise ValueError(f"Unsupported model {self.arch}")


@register
class CWDDistillModel(DistillModel):
    """                                                                                                                                                    
    Build CWD distill model.                                                                                                                               
    Args:                                                                                                                                                  
        cfg: The student config.                                                                                                                           
        slim_cfg: The teacher and distill config.                                                                                                          
    """

    def __init__(self, cfg, slim_cfg):
        super(CWDDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg)
        assert self.arch in ['GFL', 'RetinaNet'], 'Unsupported arch: {}'.format(
            self.arch)

    def build_loss(self, distill_cfg):
        assert 'distill_loss_name' in distill_cfg and distill_cfg.distill_loss_name
        assert 'distill_loss' in distill_cfg and distill_cfg.distill_loss
        loss_func = dict()
        name_list = distill_cfg.distill_loss_name
        for name in name_list:
            loss_func[name] = create(distill_cfg.distill_loss)
        return loss_func

    def get_loss_retinanet(self, stu_fea_list, tea_fea_list, inputs):
        loss = self.student_model.head(stu_fea_list, inputs)
        loss_dict = {}
        for idx, k in enumerate(self.distill_loss):
            loss_dict[k] = self.distill_loss[k](stu_fea_list[idx],
                                                tea_fea_list[idx])

            loss['loss'] += loss_dict[k]
            loss[k] = loss_dict[k]
        return loss

    def get_loss_gfl(self, stu_fea_list, tea_fea_list, inputs):
        loss = {}
        head_outs = self.student_model.head(stu_fea_list)
        loss_gfl = self.student_model.head.get_loss(head_outs, inputs)
        loss.update(loss_gfl)
        total_loss = paddle.add_n(list(loss.values()))
        loss.update({'loss': total_loss})

        feat_loss = {}
        loss_dict = {}
        s_cls_feat, t_cls_feat = [], []
        for s_neck_f, t_neck_f in zip(stu_fea_list, tea_fea_list):
            conv_cls_feat, _ = self.student_model.head.conv_feat(s_neck_f)
            cls_score = self.student_model.head.gfl_head_cls(conv_cls_feat)
            t_conv_cls_feat, _ = self.teacher_model.head.conv_feat(t_neck_f)
            t_cls_score = self.teacher_model.head.gfl_head_cls(t_conv_cls_feat)
            s_cls_feat.append(cls_score)
            t_cls_feat.append(t_cls_score)

        for idx, k in enumerate(self.distill_loss):
            loss_dict[k] = self.distill_loss[k](s_cls_feat[idx],
                                                t_cls_feat[idx])
            feat_loss[f"neck_f_{idx}"] = self.distill_loss[k](stu_fea_list[idx],
                                                              tea_fea_list[idx])

        for k in feat_loss:
            loss['loss'] += feat_loss[k]
            loss[k] = feat_loss[k]

        for k in loss_dict:
            loss['loss'] += loss_dict[k]
            loss[k] = loss_dict[k]
        return loss

    def forward(self, inputs):
        if self.training:
            s_body_feats = self.student_model.backbone(inputs)
            s_neck_feats = self.student_model.neck(s_body_feats)
            with paddle.no_grad():
                t_body_feats = self.teacher_model.backbone(inputs)
                t_neck_feats = self.teacher_model.neck(t_body_feats)

            if self.arch == "RetinaNet":
                loss = self.get_loss_retinanet(s_neck_feats, t_neck_feats,
                                               inputs)
            elif self.arch == "GFL":
                loss = self.get_loss_gfl(s_neck_feats, t_neck_feats, inputs)
            else:
                raise ValueError(f"unsupported arch {self.arch}")
            return loss
        else:
            body_feats = self.student_model.backbone(inputs)
            neck_feats = self.student_model.neck(body_feats)
            head_outs = self.student_model.head(neck_feats)
            if self.arch == "RetinaNet":
                bbox, bbox_num = self.student_model.head.post_process(
                    head_outs, inputs['im_shape'], inputs['scale_factor'])
                return {'bbox': bbox, 'bbox_num': bbox_num}
            elif self.arch == "GFL":
                bbox_pred, bbox_num = head_outs
                output = {'bbox': bbox_pred, 'bbox_num': bbox_num}
                return output
            else:
                raise ValueError(f"unsupported arch {self.arch}")


@register
class LDDistillModel(DistillModel):
    """
    Build LD distill model.
    Args:
        cfg: The student config.
        slim_cfg: The teacher and distill config.
    """

    def __init__(self, cfg, slim_cfg):
        super(LDDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg)
        assert self.arch in ['GFL'], 'Unsupported arch: {}'.format(self.arch)

    def forward(self, inputs):
        if self.training:
            s_body_feats = self.student_model.backbone(inputs)
            s_neck_feats = self.student_model.neck(s_body_feats)
            s_head_outs = self.student_model.head(s_neck_feats)
            with paddle.no_grad():
                t_body_feats = self.teacher_model.backbone(inputs)
                t_neck_feats = self.teacher_model.neck(t_body_feats)
                t_head_outs = self.teacher_model.head(t_neck_feats)

            soft_label_list = t_head_outs[0]
            soft_targets_list = t_head_outs[1]
            student_loss = self.student_model.head.get_loss(
                s_head_outs, inputs, soft_label_list, soft_targets_list)
            total_loss = paddle.add_n(list(student_loss.values()))
            student_loss['loss'] = total_loss
            return student_loss
        else:
            return self.student_model(inputs)


@register
class PPYOLOEDistillModel(DistillModel):
    """
    Build PPYOLOE distill model, only used in PPYOLOE
    Args:
        cfg: The student config.
        slim_cfg: The teacher and distill config.
    """

    def __init__(self, cfg, slim_cfg):
        super(PPYOLOEDistillModel, self).__init__(cfg=cfg, slim_cfg=slim_cfg)
        assert self.arch in ['PPYOLOE'], 'Unsupported arch: {}'.format(
            self.arch)

    def forward(self, inputs, alpha=0.125):
        if self.training:
            with paddle.no_grad():
                teacher_loss = self.teacher_model(inputs)
            if hasattr(self.teacher_model.yolo_head, "assigned_labels"):
                self.student_model.yolo_head.assigned_labels, self.student_model.yolo_head.assigned_bboxes, self.student_model.yolo_head.assigned_scores = \
                    self.teacher_model.yolo_head.assigned_labels, self.teacher_model.yolo_head.assigned_bboxes, self.teacher_model.yolo_head.assigned_scores
                delattr(self.teacher_model.yolo_head, "assigned_labels")
                delattr(self.teacher_model.yolo_head, "assigned_bboxes")
                delattr(self.teacher_model.yolo_head, "assigned_scores")
            student_loss = self.student_model(inputs)

            logits_loss, feat_loss = self.distill_loss(self.teacher_model,
                                                       self.student_model)
            det_total_loss = student_loss['loss']
            total_loss = alpha * (det_total_loss + logits_loss + feat_loss)
            student_loss['loss'] = total_loss
            student_loss['det_loss'] = det_total_loss
            student_loss['logits_loss'] = logits_loss
            student_loss['feat_loss'] = feat_loss
            return student_loss
        else:
            return self.student_model(inputs)