matchers.py 7.12 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from scipy.optimize import linear_sum_assignment

from ppdet.core.workspace import register, serializable
from ..losses.iou_loss import GIoULoss
from .utils import bbox_cxcywh_to_xyxy

__all__ = ['HungarianMatcher']


@register
@serializable
class HungarianMatcher(nn.Layer):
    __shared__ = ['use_focal_loss', 'with_mask', 'num_sample_points']

    def __init__(self,
                 matcher_coeff={
                     'class': 1,
                     'bbox': 5,
                     'giou': 2,
                     'mask': 1,
                     'dice': 1
                 },
                 use_focal_loss=False,
                 with_mask=False,
                 num_sample_points=12544,
                 alpha=0.25,
                 gamma=2.0):
        r"""
        Args:
            matcher_coeff (dict): The coefficient of hungarian matcher cost.
        """
        super(HungarianMatcher, self).__init__()
        self.matcher_coeff = matcher_coeff
        self.use_focal_loss = use_focal_loss
        self.with_mask = with_mask
        self.num_sample_points = num_sample_points
        self.alpha = alpha
        self.gamma = gamma

        self.giou_loss = GIoULoss()

    def forward(self,
                boxes,
                logits,
                gt_bbox,
                gt_class,
                masks=None,
                gt_mask=None):
        r"""
        Args:
            boxes (Tensor): [b, query, 4]
            logits (Tensor): [b, query, num_classes]
            gt_bbox (List(Tensor)): list[[n, 4]]
            gt_class (List(Tensor)): list[[n, 1]]
            masks (Tensor|None): [b, query, h, w]
            gt_mask (List(Tensor)): list[[n, H, W]]

        Returns:
            A list of size batch_size, containing tuples of (index_i, index_j) where:
                - index_i is the indices of the selected predictions (in order)
                - index_j is the indices of the corresponding selected targets (in order)
            For each batch element, it holds:
                len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
        """
        bs, num_queries = boxes.shape[:2]

        num_gts = [len(a) for a in gt_class]
        if sum(num_gts) == 0:
            return [(paddle.to_tensor(
                [], dtype=paddle.int64), paddle.to_tensor(
                    [], dtype=paddle.int64)) for _ in range(bs)]

        # We flatten to compute the cost matrices in a batch
        # [batch_size * num_queries, num_classes]
        logits = logits.detach()
        out_prob = F.sigmoid(logits.flatten(
            0, 1)) if self.use_focal_loss else F.softmax(logits.flatten(0, 1))
        # [batch_size * num_queries, 4]
        out_bbox = boxes.detach().flatten(0, 1)

        # Also concat the target labels and boxes
        tgt_ids = paddle.concat(gt_class).flatten()
        tgt_bbox = paddle.concat(gt_bbox)

        # Compute the classification cost
        out_prob = paddle.gather(out_prob, tgt_ids, axis=1)
        if self.use_focal_loss:
            neg_cost_class = (1 - self.alpha) * (out_prob**self.gamma) * (-(
                1 - out_prob + 1e-8).log())
            pos_cost_class = self.alpha * (
                (1 - out_prob)**self.gamma) * (-(out_prob + 1e-8).log())
            cost_class = pos_cost_class - neg_cost_class
        else:
            cost_class = -out_prob

        # Compute the L1 cost between boxes
        cost_bbox = (
            out_bbox.unsqueeze(1) - tgt_bbox.unsqueeze(0)).abs().sum(-1)

        # Compute the giou cost betwen boxes
        cost_giou = self.giou_loss(
            bbox_cxcywh_to_xyxy(out_bbox.unsqueeze(1)),
            bbox_cxcywh_to_xyxy(tgt_bbox.unsqueeze(0))).squeeze(-1)

        # Final cost matrix
        C = self.matcher_coeff['class'] * cost_class + \
            self.matcher_coeff['bbox'] * cost_bbox + \
            self.matcher_coeff['giou'] * cost_giou
        # Compute the mask cost and dice cost
        if self.with_mask:
            assert (masks is not None and gt_mask is not None,
                    'Make sure the input has `mask` and `gt_mask`')
            # all masks share the same set of points for efficient matching
            sample_points = paddle.rand([bs, 1, self.num_sample_points, 2])
            sample_points = 2.0 * sample_points - 1.0

            out_mask = F.grid_sample(
                masks.detach(), sample_points, align_corners=False).squeeze(-2)
            out_mask = out_mask.flatten(0, 1)

            tgt_mask = paddle.concat(gt_mask).unsqueeze(1)
            sample_points = paddle.concat([
                a.tile([b, 1, 1, 1]) for a, b in zip(sample_points, num_gts)
                if b > 0
            ])
            tgt_mask = F.grid_sample(
                tgt_mask, sample_points, align_corners=False).squeeze([1, 2])

            with paddle.amp.auto_cast(enable=False):
                # binary cross entropy cost
                pos_cost_mask = F.binary_cross_entropy_with_logits(
                    out_mask, paddle.ones_like(out_mask), reduction='none')
                neg_cost_mask = F.binary_cross_entropy_with_logits(
                    out_mask, paddle.zeros_like(out_mask), reduction='none')
                cost_mask = paddle.matmul(
                    pos_cost_mask, tgt_mask, transpose_y=True) + paddle.matmul(
                        neg_cost_mask, 1 - tgt_mask, transpose_y=True)
                cost_mask /= self.num_sample_points

                # dice cost
                out_mask = F.sigmoid(out_mask)
                numerator = 2 * paddle.matmul(
                    out_mask, tgt_mask, transpose_y=True)
                denominator = out_mask.sum(
                    -1, keepdim=True) + tgt_mask.sum(-1).unsqueeze(0)
                cost_dice = 1 - (numerator + 1) / (denominator + 1)

                C = C + self.matcher_coeff['mask'] * cost_mask + \
                    self.matcher_coeff['dice'] * cost_dice

        C = C.reshape([bs, num_queries, -1])
        C = [a.squeeze(0) for a in C.chunk(bs)]
        sizes = [a.shape[0] for a in gt_bbox]
        indices = [
            linear_sum_assignment(c.split(sizes, -1)[i].numpy())
            for i, c in enumerate(C)
        ]
        return [(paddle.to_tensor(
            i, dtype=paddle.int64), paddle.to_tensor(
                j, dtype=paddle.int64)) for i, j in indices]