hybrid_encoder.py 11.1 KB
Newer Older
dlyrm's avatar
dlyrm committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register, serializable
from ppdet.modeling.ops import get_act_fn
from ..shape_spec import ShapeSpec
from ..backbones.csp_darknet import BaseConv
from ..backbones.cspresnet import RepVggBlock
from ppdet.modeling.transformers.detr_transformer import TransformerEncoder
from ..initializer import xavier_uniform_, linear_init_
from ..layers import MultiHeadAttention
from paddle import ParamAttr
from paddle.regularizer import L2Decay

__all__ = ['HybridEncoder']


class CSPRepLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 num_blocks=3,
                 expansion=1.0,
                 bias=False,
                 act="silu"):
        super(CSPRepLayer, self).__init__()
        hidden_channels = int(out_channels * expansion)
        self.conv1 = BaseConv(
            in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act)
        self.conv2 = BaseConv(
            in_channels, hidden_channels, ksize=1, stride=1, bias=bias, act=act)
        self.bottlenecks = nn.Sequential(*[
            RepVggBlock(
                hidden_channels, hidden_channels, act=act)
            for _ in range(num_blocks)
        ])
        if hidden_channels != out_channels:
            self.conv3 = BaseConv(
                hidden_channels,
                out_channels,
                ksize=1,
                stride=1,
                bias=bias,
                act=act)
        else:
            self.conv3 = nn.Identity()

    def forward(self, x):
        x_1 = self.conv1(x)
        x_1 = self.bottlenecks(x_1)
        x_2 = self.conv2(x)
        return self.conv3(x_1 + x_2)


@register
class TransformerLayer(nn.Layer):
    def __init__(self,
                 d_model,
                 nhead,
                 dim_feedforward=1024,
                 dropout=0.,
                 activation="relu",
                 attn_dropout=None,
                 act_dropout=None,
                 normalize_before=False):
        super(TransformerLayer, self).__init__()
        attn_dropout = dropout if attn_dropout is None else attn_dropout
        act_dropout = dropout if act_dropout is None else act_dropout
        self.normalize_before = normalize_before

        self.self_attn = MultiHeadAttention(d_model, nhead, attn_dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(act_dropout, mode="upscale_in_train")
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout, mode="upscale_in_train")
        self.dropout2 = nn.Dropout(dropout, mode="upscale_in_train")
        self.activation = getattr(F, activation)
        self._reset_parameters()

    def _reset_parameters(self):
        linear_init_(self.linear1)
        linear_init_(self.linear2)

    @staticmethod
    def with_pos_embed(tensor, pos_embed):
        return tensor if pos_embed is None else tensor + pos_embed

    def forward(self, src, src_mask=None, pos_embed=None):
        residual = src
        if self.normalize_before:
            src = self.norm1(src)
        q = k = self.with_pos_embed(src, pos_embed)
        src = self.self_attn(q, k, value=src, attn_mask=src_mask)

        src = residual + self.dropout1(src)
        if not self.normalize_before:
            src = self.norm1(src)

        residual = src
        if self.normalize_before:
            src = self.norm2(src)
        src = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = residual + self.dropout2(src)
        if not self.normalize_before:
            src = self.norm2(src)
        return src


@register
@serializable
class HybridEncoder(nn.Layer):
    __shared__ = ['depth_mult', 'act', 'trt', 'eval_size']
    __inject__ = ['encoder_layer']

    def __init__(self,
                 in_channels=[512, 1024, 2048],
                 feat_strides=[8, 16, 32],
                 hidden_dim=256,
                 use_encoder_idx=[2],
                 num_encoder_layers=1,
                 encoder_layer='TransformerLayer',
                 pe_temperature=10000,
                 expansion=1.0,
                 depth_mult=1.0,
                 act='silu',
                 trt=False,
                 eval_size=None):
        super(HybridEncoder, self).__init__()
        self.in_channels = in_channels
        self.feat_strides = feat_strides
        self.hidden_dim = hidden_dim
        self.use_encoder_idx = use_encoder_idx
        self.num_encoder_layers = num_encoder_layers
        self.pe_temperature = pe_temperature
        self.eval_size = eval_size

        # channel projection
        self.input_proj = nn.LayerList()
        for in_channel in in_channels:
            self.input_proj.append(
                nn.Sequential(
                    nn.Conv2D(
                        in_channel, hidden_dim, kernel_size=1, bias_attr=False),
                    nn.BatchNorm2D(
                        hidden_dim,
                        weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
                        bias_attr=ParamAttr(regularizer=L2Decay(0.0)))))
        # encoder transformer
        self.encoder = nn.LayerList([
            TransformerEncoder(encoder_layer, num_encoder_layers)
            for _ in range(len(use_encoder_idx))
        ])

        act = get_act_fn(
            act, trt=trt) if act is None or isinstance(act,
                                                       (str, dict)) else act
        # top-down fpn
        self.lateral_convs = nn.LayerList()
        self.fpn_blocks = nn.LayerList()
        for idx in range(len(in_channels) - 1, 0, -1):
            self.lateral_convs.append(
                BaseConv(
                    hidden_dim, hidden_dim, 1, 1, act=act))
            self.fpn_blocks.append(
                CSPRepLayer(
                    hidden_dim * 2,
                    hidden_dim,
                    round(3 * depth_mult),
                    act=act,
                    expansion=expansion))

        # bottom-up pan
        self.downsample_convs = nn.LayerList()
        self.pan_blocks = nn.LayerList()
        for idx in range(len(in_channels) - 1):
            self.downsample_convs.append(
                BaseConv(
                    hidden_dim, hidden_dim, 3, stride=2, act=act))
            self.pan_blocks.append(
                CSPRepLayer(
                    hidden_dim * 2,
                    hidden_dim,
                    round(3 * depth_mult),
                    act=act,
                    expansion=expansion))

        self._reset_parameters()

    def _reset_parameters(self):
        if self.eval_size:
            for idx in self.use_encoder_idx:
                stride = self.feat_strides[idx]
                pos_embed = self.build_2d_sincos_position_embedding(
                    self.eval_size[1] // stride, self.eval_size[0] // stride,
                    self.hidden_dim, self.pe_temperature)
                setattr(self, f'pos_embed{idx}', pos_embed)

    @staticmethod
    def build_2d_sincos_position_embedding(w,
                                           h,
                                           embed_dim=256,
                                           temperature=10000.):
        grid_w = paddle.arange(int(w), dtype=paddle.float32)
        grid_h = paddle.arange(int(h), dtype=paddle.float32)
        grid_w, grid_h = paddle.meshgrid(grid_w, grid_h)
        assert embed_dim % 4 == 0, \
            'Embed dimension must be divisible by 4 for 2D sin-cos position embedding'
        pos_dim = embed_dim // 4
        omega = paddle.arange(pos_dim, dtype=paddle.float32) / pos_dim
        omega = 1. / (temperature**omega)

        out_w = grid_w.flatten()[..., None] @omega[None]
        out_h = grid_h.flatten()[..., None] @omega[None]

        return paddle.concat(
            [
                paddle.sin(out_w), paddle.cos(out_w), paddle.sin(out_h),
                paddle.cos(out_h)
            ],
            axis=1)[None, :, :]

    def forward(self, feats, for_mot=False):
        assert len(feats) == len(self.in_channels)
        # get projection features
        proj_feats = [self.input_proj[i](feat) for i, feat in enumerate(feats)]
        # encoder
        if self.num_encoder_layers > 0:
            for i, enc_ind in enumerate(self.use_encoder_idx):
                h, w = proj_feats[enc_ind].shape[2:]
                # flatten [B, C, H, W] to [B, HxW, C]
                src_flatten = proj_feats[enc_ind].flatten(2).transpose(
                    [0, 2, 1])
                if self.training or self.eval_size is None:
                    pos_embed = self.build_2d_sincos_position_embedding(
                        w, h, self.hidden_dim, self.pe_temperature)
                else:
                    pos_embed = getattr(self, f'pos_embed{enc_ind}', None)
                memory = self.encoder[i](src_flatten, pos_embed=pos_embed)
                proj_feats[enc_ind] = memory.transpose([0, 2, 1]).reshape(
                    [-1, self.hidden_dim, h, w])

        # top-down fpn
        inner_outs = [proj_feats[-1]]
        for idx in range(len(self.in_channels) - 1, 0, -1):
            feat_heigh = inner_outs[0]
            feat_low = proj_feats[idx - 1]
            feat_heigh = self.lateral_convs[len(self.in_channels) - 1 - idx](
                feat_heigh)
            inner_outs[0] = feat_heigh

            upsample_feat = F.interpolate(
                feat_heigh, scale_factor=2., mode="nearest")
            inner_out = self.fpn_blocks[len(self.in_channels) - 1 - idx](
                paddle.concat(
                    [upsample_feat, feat_low], axis=1))
            inner_outs.insert(0, inner_out)

        # bottom-up pan
        outs = [inner_outs[0]]
        for idx in range(len(self.in_channels) - 1):
            feat_low = outs[-1]
            feat_height = inner_outs[idx + 1]
            downsample_feat = self.downsample_convs[idx](feat_low)
            out = self.pan_blocks[idx](paddle.concat(
                [downsample_feat, feat_height], axis=1))
            outs.append(out)

        return outs

    @classmethod
    def from_config(cls, cfg, input_shape):
        return {
            'in_channels': [i.channels for i in input_shape],
            'feat_strides': [i.stride for i in input_shape]
        }

    @property
    def out_shape(self):
        return [
            ShapeSpec(
                channels=self.hidden_dim, stride=self.feat_strides[idx])
            for idx in range(len(self.in_channels))
        ]